
Crossing the Rhine: Moving to CLE 6.0 System Management

Tina L. P. Butler
National Energy Research Scientific Computing Center

Ernest Orlando Lawrence Berkeley National Laboratory
Berkeley, CA USA

Email: tlbutler@lbl.gov

Abstract With the release of Cray Linux Environment 6.0,
Cray has introduced a new paradigm for CLE system
configuration and management. This major shift requires
significant changes in formatting and practices on the System
Management Workstation (SMW). Although Cray has
committed to delivering migration tools for legacy systems,
they will not be available until CLE 6.0 UP02, scheduled for
July 2016 release. In the third quarter of 2016, NERSC will be
taking delivery of the second phase of its Cori system, with
Intel KNL processors. KNL requires CLE 6.0. In order to
support phase 2, Cori will have to be upgraded to CLE 6.0 -
the hard way. This paper will chronicle that effort.

I. INTRODUCTION

Cray’s latest version of the Cray Linux Environment
(CLE) includes a radical change in system management
software and procedures. As existing and new Cray sites
move to installing CLE 6.0 and SMW 8.0 they will have to
reorient their approach to system upgrades and maintenance
to succeed with this new software release. The National
Energy Research Scientific Computing Center (NERSC) at
Lawrence Berkeley National Laboratory is required to be an
early adopter of CLE 6.0/SMW 8.0 . NERSC installed the
first phase of it’s newest Cray supercomputer, Cori, in the
middle of 2015; the delivery of the second phase of Cori is
imminent. This second phase is based on Intel’s KNL
processor, which is only supported in CLE 6.0. In order to
install Cori Phase 2, NERSC must move Cori Phase 1 to
CLE 6.0.

II. SETTING

NERSC is the Department of Energy’s largest open
science computing centers. NERSC has more than 5000
users and more that 700 user-written applications.

This large and diverse user population is currently
supported on three Cray systems that are installed at
NERSC: Mendel, a Cray CS300; Edison, a Cray XC-30 and
Cori, a Cray XC-40 system. Each of the XC systems has one
or more large Lustre-based scratch filesystems. Persistent
storage for users is provided by the NERSC Global
Filesystem (NGF), which comprises 8 GPFS-based
filesystem instances that are mounted on all of NERSC’s

production and testbed systems. On the Cray systems
compute node access to the NGF filesystems is provided
through the Data Virtualization Service (DVS).

III. CLE 6.0 – WHY UPGRADE NOW?

Cori Phase 1, delivered to NERSC in 2015, consists of 12
cabinets with Intel Haswell-based compute nodes and 144
Cray DataWarp nodes. The focus of the phase 1 system was
very much to support an emerging data-intensive workload.
Since the DataWarp software was not yet ready for CLE 6.0
when Cori P1 arrived, the system was brought into
production with CLE 5.2 UP04. Cori P2, arriving in the
summer of 2016, has 52 cabinets of KNL compute nodes and
another 144 DataWarp nodes. In order to install Phase 2 and
integrate it with Phase 1, it will be necessary to bring the
Phase 1 system up to the CLE 6.0 release.

At the time that Cori Phase 1 was delivered the only CLE

6.0 release available was CLE 6.0 UP00. CLE 6.0 UP00 was
a limited availability (LA) release that was only intended for
newly installed XC-40 systems. In order to limit system
downtime, it was decided that NERSC should install CLE
6.0/SMW 8.0 UP00 on the Cori test system (TDS), Gerty, as
a learning and debugging exercise.

IV. CRAY MANAGEMENT SYSTEM BASICS

CLE 6.0/SMW 8.0, code named Rhine/Redwood
introduces a new style of system management, the Cray
Management System (CMS). CMS represents a redesign of
the whole CLE/SMW install and upgrade process using more
recent and more widely known tools like Ansible and Open
Stack. CMS separates the installation and configuration of
software images for service, login and compute nodes,
allowing prescriptive definition of host configurations and
local custom node types. Base images for both internal and
external hosts are created using repositories and recipes on
the SMW. Host-specific configuration data is created using
worksheets and the configurator, and then applied at boot
time through a set of ansible plays.

V. NERSC LOCAL CUSTOMIZATIONS

NERSC has a number of localized customizations in
place on Cori under CLE 5.2, but two particular local
configurations have to be adapted to work with CMS..
NERSC network configuration is not accomplished through
node specialization, but instead uses a series of local scripts
and interface and route definition files to set IP addresses and
routes at boot time.. The other significant local variation is
the use of DVS to serve the GPFS-based NERSC global
filesystems (NGF) to compute and service nodes on Cori.
NGF center-wide filesystems provide all home directories
and persistent storage on all of NERSC’s production
systems.

VI. NETWORK CONFIGURATION

Cori has 32 RSIP nodes, 32 DVS nodes 2 network nodes
and 130 LNET nodes. Using the configurator (cfgset) is
laborious and error-prone, since the data for each interface
has to be entered over multiple queries. Bonded interfaces
are not yet supported in the cfgset syntax, so we needed to
work around that limitation as well. Local Cray support
staff wrote a configuration scraper script that collected
information from all the service and login nodes on Cori and
Gerty. The scraper data from Gerty was then used to
populate the cray_net_worksheet.yaml file with data for all
the network interfaces and route information. Interface
bonding was accomplished by constructing ifcfg files that
were uploaded to nodes using the CMS provided
simple_sync service and scripts run by ansible plays at boot
time. This was ultimately successful, but efficient network
configuration is still a work in progress.

VII. GPFS AT NERSC

The NERSC Global Filesystem is actually 8 different
GPFS-based filesystem instances that are mounted on all
NERSC production systems. Each system has its own GPFS
remote clusters that access the filesystems through the
central owning clusters. On Cori and Gerty, DVS and elogin
nodes mount GPFS natively using the standard GPFS client;
the DVS nodes serve the NGF filesystems to the compute
partition and selected service nodes.

One of the features of CLE 6.0 is that it is based on SLES

12. Only the two latest releases of GPFS are supported on
SLES 12, 4.1.1 and 4.2.0. Going to CLE 6.0 will require a
GPFS upgrade as well as an operating system upgrade.
Fortunately, the NGF owning clusters are currently being
upgraded to GPFS 4.1.1, so they will be able to support the
required versions for SLES 12.

VIII. GPFS WITH RHINE/REDWOOD

GPFS installations and upgrades need to be maintainable
and sustainable. To install GPFS under CLE 6.0, we could
do manual workarounds, but that does not lead to a
sustainable model. Some of the changes coming with UP01
should help, but further modifications will probably be
needed. The GPFS install model is not a natural fit with the
CLE 6.0 install philosophy. GPFS requires an initial install
of the base RPMS, and then subsequent update installs for
any fix levels (PTFs). After the necessary RPMs are
installed into the bootable image, a personality layer has to
be built on a booted client node; this personality RPM has to
be regenerated whenever the kernel changes and reapplied to
the bootable image. The GPFS remote cluster configuration
must also persist across boots.

IX. INSTALLING GPFS

The first step in the GPFS installation was to create local
repositories for GPFS RPMs. I created a repository for both
the base release – in this case, 4.1.0 – and update RPMs –
4.1.1.0 and 4.1.1.4. CMS repositories are managed using
the repo command:

repo create --arch x86-64 --type SLES12 gpfs-4.1-

base

Desired RPMs are then added to the repositories. I also
created two package collections with the subset of gpfs
RPMs needed for the base and update installs. GPFS
installation cannot rely on dependencies since the base
requires an initial install (rpm –ivh) and the updates require
an update install (rpm –Uvh). I discovered that package
collection syntax is quite picky , so several iterations were
required before all required RPMs were correctly installed in
the new image. Validating repos and pkgcolls is not a
guarantee that they will work in the anticipated fashion.

Image recipes are JSON files that define the set of rpms

needed to create an image. Recipes can contain nested
package collections and packages. The set of recipes for an
architecture or release are grouped together in a single JSON
file. You can see the entire set of existing recipes using the
recipe list command. I cloned the existing base service
node recipe to modify for the GPFS client recipe:

recipe create –clone
service_cle_6.0up00_sles_12_x86-64-ari
nersc_gpfs_client

The local recipe is written into

/etc/opt/cray/imps/image_recipes.d/image_recipes.local.json.
I then added the gpfs-base pkgcoll and repo to the cloned
recipe. To create the new custom image:

image create –r nersc_gpfs_client
nersc_gpfs_client

The new image is written to
/var/opt/cray/imps/image_roots. An image root is a directory
hierarchy with all the installed RPMs from the recipe. The
install can be checked by chroot’ing into the install image
and querying the RPM database.

At this point I had to cheat. I copied the gpfs update

RPMs to image_root/nersc_gpfs_client/tmp and installed
them manually. I now had an image root with GPFS
installed, so I tried a test run of building the personality layer
or “shim”, which consists of a set of kernel modules. I
discovered that the base service node recipe does not include
several things required for building the shim – make, gcc and
the kernel header files.

I found the necessary RPMs in the release repositories,

added them to the custom recipe, and built a new image root.
Another test run of building the shim failed when the kernel
header version.h could not be found. I eventually found
version.h and added a symbolic link:

ln –s /usr/src/linux-3.12.48-
52.27/include/uapi/linux/dvb/version.h
/usr/src/linux-3.12.48-52.27/include/linux/version.h

The next build attempt was successful. Finally, I was

able to create a bootable image:

Image export nersc_gpfs_client

The bootable image was written to
/var/opt/cray/imps/boot_images. I associated the image with
a DVS node:

Cnode update –I
/var/opt/cray/imps/boot_images/nersc_gpfs_client.
cpio –n c0-0cs3n2

The DVS node was then booted with the new image.

The GPFS personality RPM was then built in the proper
client environment, and the RPM was harvested from
/root/rpmbuild back to the SMW.

/usr/lpp/mmfs/bin/mmbuildgpl
/usr/lpp/mmfs/bin/mmbuildgpl –build-package

The GPFS client image now has to be rebuilt with the

personality RPM that was generated on the DVS server.
Every time the kernel changes, or GPFS is upgraded, the
personality layer must be rebuilt.

X. WHAT REMAINS TO BE DONE?

Now that GPFS has been installed, the DVS nodes have
to be configured. In UP00, the DVS configuration
worksheet and cfgset support special mount options for DVS
client nodes, but not for DVS servers. It is necessary to

augment /etc/fstab with the entries required to define the
NGF mounts. This is accomplished with simple_sync and an
ansible play. The remote cluster also has to be built in order
to mount the NGF filesystems. The GPFS cluster
configuration is stored in /var/mmfs/gen/mmsdrfs. Non-
volatile storage defined for each service node will preserve
that file under normal circumstances, but we still need a
method for disaster recovery.

In GPFS 4.1.1, a new set of features has been introduced

that will allow a backup copy of mmsdrfs to be automatically
updated every time a configuration change is made. The
mmsdrbackup callback can write cluster configuration
changes to a specified copy of mmsdrfs on the boot raid; a
companion command, mmsdrrestore will recreate the cluster
from the backup copy. This has not been implemented yet
on CLE 6.0, but it has been demonstrated on NERSC’s
GPFS development cluster.

XI. SUMMARY

CLE 6.0/SMW 8.0 represent a large change in system
management philosophy and practice. It is very much a
work in progress, and we look forward to improvements that
will be available shortly in UP01. In particular, supporting
NERSC’s GPFS center-wide infrastructure is a partially
solved problem and has plenty of room for improvements in
ongoing work with Rhine/Redwood.

ACKNOWLEDGMENT

This work was supported by the Director, Office of
Science, Office of Advance Scientific Compting Research of
the U.S. Department of Energy under contract No. DEAC02-
05CH11231.

REFERENCES
[1] “Cray Management System for XC Systems with SMW
8.0/CLE 6.0 (Draft)”, Harold Longley, May 2016.

[2] IBM Spectrum Scale Concepts, Planning, and Installation
Information, IBM Corporation 2016

