
Exploiting Thread Parallelism for Ocean Modeling
on Cray XC Supercomputers

Abhinav Sarje∗, Douglas W. Jacobsen†, Samuel W. Williams∗, Todd Ringler†, Leonid Oliker∗
∗Lawrence Berkeley National Laboratory {asarje,swwilliams,loliker}@lbl.gov

†Los Alamos National Laboratory {douglasj,ringler}@lanl.gov

Abstract—The incorporation of increasing core counts in
modern processors used to build state-of-the-art supercomput-
ers is driving application development towards exploitation of
thread parallelism, in addition to distributed memory parallelism,
with the goal of delivering efficient high-performance codes. In
this work we describe the exploitation of threading and our
experiences with it with respect to a real-world ocean modeling
application code, MPAS-Ocean. We present detailed performance
analysis and comparisons of various approaches and configura-
tions for threading on the Cray XC series supercomputers.

I. INTRODUCTION

Global climate modeling is considered a grand challenge
problem due to the spatial and temporal scales required to
accurately simulate the involved phenomena. Temporal scales
for climate models are on the order of centuries, while spatial
scales have resolutions up to several kilometers. The Model
for Prediction Across Scales (MPAS) is an Earth-system mod-
eling framework collaboratively developed at the Los Alamos
National Laboratory and the National Center for Atmospheric
Research. The MPAS framework has four dynamical cores –
shallow water, atmosphere, land ice, and ocean. In this paper,
we focus on the ocean core, MPAS-Ocean [1], which has been
primarily implemented in Fortran.

Two-dimensional spherical centroidal Voronoi tessellations
(SCVT) form the underlying discretized mesh for MPAS-
Ocean, covering Earth’s oceans [1], [2], [3]. These meshes are
unstructured and support variable resolutions across the spatial
domain. An additional third dimension also exists as vertical
columns for each mesh element, and represents the ocean
depth. Data structures are built on top of the mesh where,
although the horizontal structure is staggered, the vertical
structure, representing ocean depth, is regular. The require-
ments for climate studies need simulations on a large number
of horizontal degrees of freedom, O(106) to O(107) with
about O(102) vertical levels per horizontal degree of freedom,
and demand performance many orders of magnitude faster
than real-time. Combined, these necessitate efficient execution
on highly parallel supercomputing systems to drive useful
analysis. In this paper, we describe the utilization of on-node
threading to effectively exploit the high degrees of hierarchical
parallelism available in the state-of-the-art systems, with a
focus on two Cray XC series supercomputers.

Achieving high parallel efficiency on applications like
MPAS-Ocean, which use unstructured meshes, can be chal-
lenging due to the various factors characteristic of such meshes

affecting the overall performance, including imbalance across
processes and threads, irregular data layouts and pointer jump-
ing, inefficient communication patterns involving boundary
data exchanges, and non-uniform amounts of work at each
mesh element due to varying number of valid vertical levels
(spatially varying ocean depth). Additionally, this application
utilizes deep halo regions, where several layers of halo el-
ements are needed, aggravating the impact of imbalance, as
illustrated in Fig. 1. Furthermore, for simplicity and ease of
implementation, MPAS-Ocean uses padded mesh data struc-
tures where each mesh element has memory allocated for the
overall maximum vertical depth, and the redundant levels at
each element are marked as invalid, as shown in Fig. 2.

Improving performance of this application requires address-
ing all these challenges, including better data organization to
improve cache efficiency and intelligent mesh partitioning that
takes the halo regions into account to reduce imbalances in
both the work load per process as well as communication vol-
umes [4]. Exploitation of on-node shared-memory parallelism
through threading can also enhance the performance due to
factors such as reduced memory usage by the elimination of
deep inter-core halo regions, lightweight concurrency manage-
ment within NUMA domains, reduced network message con-
tention, and larger (more efficient) MPI messaging. Threading
also can benefit from data sharing among threads of a process
through better cache data re-use. In this paper, we explore and
demonstrate the utilization of thread parallelism in the MPAS
Ocean core. The primary contributions of this work are:

• Implementation of threading into the MPAS ocean core
along with performance optimizations.

• Detailed analysis of various threading configurations and
scheduling to guide the selection of options delivering
best performance.

• Analysis of application scaling, with respect to both
execution time and energy consumption, to identify per-
formance optimal configurations and concurrency levels
for a given mesh size.

• Additionally, we explore the potential performance en-
hancement in forthcoming CPU architectures, such as the
Intel Knights Landing processors, through the utilization
of new architectural features such as increased thread
parallelism and high-bandwidth memory.



Fig. 1. (Left) An example of a variable resolution mesh covering Earth’s surface. (Center) A mesh partitioning into blocks, each represented by a different
color, covering only the oceans (excluding land). (Right) Deep halo regions with two layers of halo cells are shown in shades of color of the corresponding
blocks. In the strong scaling limit, these halos begin to dominate the local storage requirements.

Fig. 2. Varying ocean depth across the mesh elements with padding with
unused levels are shown.

II. EXPOSING PARALLELISM FOR THREADING

MPAS-Ocean meshes are composed of mesh elements,
namely, cells, vertices and edges. These meshes are decom-
posed into partitions called blocks through the use of mesh
partitioners [4], each with a unique subset of elements, which
are ideally contiguous. These blocks are distributed across the
compute processors via MPI, with each MPI process owning
one or more blocks. Deep halo regions, typically with depth
of three, used for communicating data across these blocks,
are constructed for each block to provide data continuity.
With such decomposition flexibility, two primary levels of
on-node parallelism are exposed: block-level and element-
level. By assigning multiple blocks per process, threading
can be exploited via parallelization over the list of blocks
owned by a process. Hence, each process would ideally own a
number of blocks that is equal to or a multiple of the number
of available threads to ensure a well-balanced computation.
This level provides coarse-grained threading, and results in
a minimal implementation disruption to the code. Unlike the
halo-exchanges across different compute nodes requiring off-
node data movements, simple intra-node halo-exchanges can

be performed among the blocks owned by a single process
without the need of any explicit communication.

Given the current trend of rapidly increasing core counts on
modern multicore processors, threading over blocks may yield
insufficient parallelism, leading to under-utilization of the
available compute resources. Moreover, the deep intra-block
(i.e. inter-thread) halo regions persist and consume memory,
which may lead to any communication performance gain being
outweighed by this overhead. An alternate to the threading
implementation involves assigning a single or small number
of blocks per MPI process, while threading over the mesh
elements (i.e. cells, edges and vertices) contained in these
blocks. This approach eliminates intra-process halo exchanges
as well as all inter-thread deep halo regions. As such, it is
both communication- and memory-efficient, while providing
a finer-grained parallelism. On the other hand, this approach
requires greater code implementation disruption and efforts.
Both of these threading approaches are shown in Fig. 3. Ulti-
mately, our performance analysis showed higher performance
with element-level threading compared with the block-level
approach, and we therefore select this decomposition for our
study.

In order to implement threading within the ocean core,
we took an incremental approach that preserves not only
the ability to run flat MPI, but also allows users to tune
performance for the optimal balance of processes and threads.
Additionally, it ensures that the ocean core threading strategy
is kept independent from other cores in the MPAS system,
which may or may not implement threading. To that end, we
embrace a single program multiple data (SPMD) approach
to OpenMP parallelism via a global ompparallel region
enclosing the ocean core simulation timestepping, where all
threads execute all operations in a timestep concurrently. This
approach was motivated by the the assumption that frequent
creation of parallel regions is an impediment to strong scaling.
Since some operations on shared memory must be executed
sequentially, such as allocations and deallocations of large
data buffers, a combination of omp get thread num and



Fig. 3. (Left) Cell assignments to two processes, each shown in different color. (Center) Block-level threading where each set of cells assigned to a process
is further decomposed into blocks, each assigned to a different thread, shown in different colors. (Right) Element-level threading where cells assigned to a
process are distributed among all threads depending on the scheduling policy used, the cells assigned to a thread shown in different colors for one of the
processes.

ompbarrier ensures that exactly one thread calls the memory
management routines to allocate and deallocate the buffers
required within each routine, and no thread can access the
data before it is allocated. Similar constructs are used for
calls to the MPI communication (halo-exchanges) and I/O
routines where a single thread per process is responsible for
performing these operations. All computational loops over
the mesh elements in the ocean core are threaded with a
!$omp do schedule(runtime) in order to enable tuning of
the thread scheduling algorithm and chunk size used at run-
time. However, computations over the vertical depth are not
threaded, instead we rely on the vectorization and instruction-
level parallelism of the underlying processor to maximize
performance over these relatively short loops.

It should be noted that although computation on each
vertical column in the mesh is limited by the actual depth
of the ocean at that point on the Earth, the underlying data
structure is two-dimensional with a common maximum depth
across all columns throughout the mesh, as illustrated in Fig 2.
The levels beyond the actual depth at a cell are invalid and
not involved in computations. Although this greatly simplifies
indexing and implementation, micro-benchmarks suggest that
this approach can impede efficient memory access and memory
requirements, and thus negatively impact both inter-process
and inter-thread load balancing. The exploration of remedies
of these impediments is out of scope of this paper and we
leave it as a future work.

III. COMPUTATIONAL ENVIRONMENT AND MESHES USED

The current and near-future state-of-the-art supercomput-
ers utilize multi- and many-core processors as the primary
workhorse. With the trend of increasing number of cores
available on a compute node, the need to effectively thread
codes has become more important now than ever in order to
efficiently utilize the computational power offered by these
architectures. In this work we focus on the current Cray
XC series supercomputers installed at the National Energy

Research and Scientific Computing Center (NERSC), and
present the performance on the following system:

• Cray XC40 (Cori Phase 1): This system consists of
1,630 dual-socket compute nodes housing 16-core Intel
Haswell processors, providing a total of 32 cores and
128GB memory per node with two NUMA domains, and
connected through the Cray Aries interconnect. This is
phase 1 of the Cori system, which will ultimately house
the Intel Knights Landing processors.

We use Intel compilers version 16.0 and collect performance
data using the TAU performance tool [5] in conjunction with
hardware counters through PAPI [6]. Additional measurements
of number of FLOPs and memory bandwidth are performed
using Intel SDE and Intel Vtune tools.

In the experiments presented in this paper, the simulations
are performed using two different input meshes. These meshes
have been selected based on their sizes (i.e. horizontal reso-
lutions and vertical depths) and the goal of the experiments.
The details of these two meshes are as follows:

1) Mesh 1: This mesh represents discretization of the
Earth’s oceans at a uniform resolution of 60 kms. It
consists of a total of 114,539 cells representing the mesh
surface, with ocean depths represented by a maximum
of 40 vertical levels.

2) Mesh 2: This is a variable resolution mesh with dis-
cretization ranging from 30 kms at the North Atlantic
region to 60 kms elsewhere, resulting in a total of
234,095 horizontal cells. Each cell has a maximum of
60 vertical levels representing the ocean depths.

IV. THREADING IMPLEMENTATION

The common models to utilize multiple on-node compute
cores include distributed-memory (e.g. MPI), shared-memory
(e.g. threading), or a hybrid of the two. Although each model
has its advantages, the overall performance benefits are gen-
erally problem dependent. MPAS-Ocean was originally devel-
oped using only MPI parallelism. In this section, we describe



our hybrid implementation, by incorporating threading using
OpenMP. As previously discussed in Section II, we select
threading at the mesh element level (cells, edges and vertices).
In this application, the use of such on-node threading across
multiple cores has a number of potential benefits, including:

• Executing threads instead of multiple MPI processes
across cores now demands less aggregate memory and
reduces communication traffic.

• Since threads share the data corresponding to the blocks
assigned to their parent process, the total number of
blocks required is effectively reduced by a factor of
the number of threads, thereby reducing the size of
the halo regions. This contributes to lowered overall
communication volume, as well as reduced computations
needed on the halo elements.

• MPAS-Ocean can now scale to higher concurrencies com-
pared to the MPI-only version, primarily due to reduced
resource requirements.

• Caches now have improved utilization through better data
reuse across the threads.

With increasing depth of memory hierarchies in modern
processor architectures, reduction in the memory footprint
as a result of threading is expected to have further increase
in performance. This enhancement is particularly significant
when the working data set is able to fit into the lower-latency
high-bandwidth memory levels closer to the compute cores,
minimizing the amount of data fetching required from the
higher-latency low-bandwidth memories, while also helping
hiding the latency overheads.

A. Element distributions

In our work, we examine several different approaches to
distribution of mesh elements across threads. A straight-
forward approach to implement threading using OpenMP is
to use the loop directives ‘!$omp do’ with each of the element
loops explicitly. Another approach is to use a pre-computed
distribution of elements among the threads to specify the
range of elements a given thread is responsible for computing.
This latter approach gives a finer control over the distribu-
tion of elements across the threads, compared to the pre-
defined scheduling policies with explicit OpenMP directives,
and allows for incorporating any prior knowledge about the
elements in computing the distributions. Apart from a naive
static division of elements across the threads, equivalent to
the OpenMP static scheduling, we also implemented a depth-
aware distribution, where instead of equally distributing the
number of elements across threads, the total work is equally
distributed in the anticipation of achieving a better compute
load balance among the threads due to the varying valid
depths. The former approach requires the effort of going over
all the loops over elements throughout the ocean core code and
adding the OpenMP directives to each of them. In contrast, the
latter approach simply requires calculating ‘begin’ and ‘end’
indices for each thread corresponding to each of the element
types during application initialization and using these indices
in the element loops. Implementing a different distribution

32x1 16x2 8x4 4x8 2x16

# MPI Procs. × # OMP Threads

0

20

40

60

80

100

120

140

T
im

e
 [

s]

OpenMP Static Scheduling

Pre-computed Static Distribution

Pre-computed Depth-aware Distribution

Fig. 4. Performance comparison with different element distribution ap-
proaches: The performance as execution times for the routine advection
of MPAS-Ocean is shown with the approaches considered to implement
threading in MPAS-Ocean. For each variation, performance with respect to
various configurations of number of MPI tasks and OpenMP threads on a
single Cori node is shown. Using explicit OpenMP directives to parallelize
the element loops consistently outperforms both the approaches using pre-
computed element distributions: naive static and depth-aware distributions.

only requires updating this calculation, leaving rest of the code
untouched.

We implemented these threading approaches within the
routine advection in the ocean core in order to evaluate their
performance. The generated results are shown in Fig. 4. In
these experiments we observe that a straight-forward approach
using explicit loop directives consistently performs equivalent
to (or marginally better than) the latter approaches with
pre-computed element distributions making performing any
intelligent balanced distribution redundant. As we show in
later sections of this paper, this is primarily due to the code
being heavily memory bound. We will present detailed rea-
sonings and validations on why being memory-bound makes
any intelligent depth-awareness useless in order to improve
performance of this code. Thus, for the remainder of this study
we implement and consider MPAS-Ocean threading only via
the explicit OpenMP loop directives.

B. Memory Initialization

In the baseline OpenMP threaded implementation, the com-
plete ocean core within MPAS was threaded. This did not
include the common MPAS framework which lies outside
the ocean core, as mentioned previously in Section II. Since
the memory allocation and initialization routines are also a
part of the framework, and not ocean core, they were used
as is. Therefore, all memory initialization through the use of
these routines in the ocean core was single threaded. In our
preliminary performance evaluations of the threaded ocean
core, we observed that certain routines scaled poorly with
increasing number of threads, making the overall performance
worse in the hybrid mode, indicating the presence of Amdahl
bottlenecks. This behavior is highlighted in Fig. 5 for a



MPI-only 32x1 16x2 8x4 4x8 2x16

# MPI Procs. × # OMP Threads

10-1

100

101

102
T
im

e
 [

s]

btr_se_subcycle_vel_pred

btr_se_subcycle_acc

btr_se_subcycle_ssh_pred

btr_se_subcycle_vel_corr

btr se subcycle loop

Fig. 5. Performance of a small set of compute functions. Several of
the functions shown exhibit an exponentially degrading performance with
increasing number of threads, indicating the presence of Amdahl bottleneck
in the threaded code. Note that the y-axis is in log-scale.

small set of routines. Further investigation revealed that this
behavior was primarily due to the use of these single threaded
memory management routines, limiting the thread scaling.
Furthermore, since the operating system uses a “first-touch”
policy in allocating requested memory, initialization performed
by a single thread put the entire buffer nearest to the one
core executing this thread, resulting in NUMA effects creating
additional performance impediment in certain configurations.

Since buffer initialization is necessary in this application,
setting all buffer entries to default safe values, updating the
memory management framework to address these performance
issues was, hence, necessary to obtain any higher performance
with the threaded ocean core. To remedy this impediment, we
implemented threaded versions of these memory management
routines. This significantly improved thread scaling, as shown
in Fig. 6. Note, some routines, which make system calls to
get pages from the OS, will always be slower. Moreover, as
one cannot guarantee first touch in every call to the memory
routines, since the actual buffer could have been allocated
and initialized during application initialization, performance is
sensitive to NUMA issues in the 1×32 configurations. Never-
theless, performance is now generally constant across process
vs. thread configurations within a NUMA node, resulting in
improved scaling. With the removal of this Amdahl bottleneck,
the overall simulation performance improved by up to 2.5×
at high thread concurrencies.

C. OpenMP Thread Scheduling Policies

We next examine how various OpenMP thread scheduling
policies affect the performance of MPAS-Ocean. The OpenMP
standard [7] provides three basic scheduling policies, which
may be selected by the programmer as a part of the loop
directives, or at runtime when the schedule(runtime) clause
is specified with the loop directives. These basic policies
are: static, dynamic and guided. An additional parameter,

chunk size can be given with the static and dynamic schedul-
ing, which specifies the granularity of the loop iteration
chunks. The mapping from iteration count to a thread is
predictive in the static scheduling, in which by default, the
total iteration count is divided equally into nt chunks, where
nt is the number of threads. A smaller chunk size results in a
round-robin distribution among the threads until all chunks are
assigned, and a size of one results in interleaving of threads
with loop iterations. On the other hand, dynamic scheduling
assigns iterations to threads in an on-demand basis, with a
default chunk size of one. The exploration of chunk size is
designed to explore whether the default data is amenable to
constructive locality in a last level cache (whether adjacent
threads can operate on spatially close or overlapping data)
while the use of dynamic scheduling is designed to evaluate
whether thread load balancing can be improved.

The performance results of these experiments with mesh
1, run with varying scheduling policies and chunk sizes, are
shown in Fig. 7 for the Cori system. The different chunk
sizes used are: default, 100, 10 and 1 for static, and 1
(default) and 10 for dynamic scheduling. It can be observed
that the performance drops considerably for small chunk sizes,
making the default dynamic and static with chunk size of one
the worst performing policies in our case, while the default
static and guided policies exhibit the best performance and
scaling with increasing number of threads. A summary of
the performance with respect to the scheduling policies and
increasing number of threads per MPI process is shown in
Fig. 8 as heat maps for Cori using 1, 2, 4, and 8 nodes. As
a result of these experiments, we select static as the runtime
for scaling experiments.

D. Application Scaling

In Fig. 9, we show strong scaling performance of the
hybrid threaded implementation of MPAS-Ocean, for a various
MPI process and OpenMP thread combination configurations,
in terms of both simulation time and energy consumption.
At low concurrencies, configurations with lower number of
threads outperform the others significantly. However, at higher
concurrencies, this trend slowly changes in favor of configura-
tions with higher number of threads, resulting in the threaded
versions offering significantly better scaling than the MPI-
only version. This behavior is because performance scaling
of configurations with higher number of MPI processes are
bound by both, increased communication traffic and volume,
and extra computations associated with the larger halo region
volumes. Ultimately, the flexible hybrid solution allows users
to tune the threads vs. process balance to identify optimal
configurations – a process subtly different from the MPI-only
or all OpenMP approaches.

E. Memory footprint analysis

A major advantage of incorporating threading is the reduc-
tion in the memory requirements of the code. In this section,
we analyze the peak resident set size requirements for MPAS-
Ocean in our experiments. These memory usage results are



32 × 1 16 × 2 8 × 4 4 × 8 2 × 16

# MPI Procs. × # OMP Threads

0

100

200

300

400

500

600
T
im

e
 [

m
s]

Original

Threaded Initialization

32x1 16x2 8x4 4x8 2x16 1x32

# MPI Procs. × # OMP Threads

0

50

100

150

200

250

300

S
im

u
la

ti
o
n
 T

im
e
 [

s]

Original
Threaded Initialization

32x1 16x2 8x4 4x8 2x16 1x32

# MPI Procs. × # OMP Threads

1.0

1.5

2.0

2.5

S
p
e
e
d
u
p
 o

v
e
r 

O
ri

g
in

a
l

Original
Threaded Initialization

Fig. 6. Benefits of threading memory initialization routines: (Left) Detailed timings for the memory management routines called within the
equation of state routine are shown. Data for all threads across all processes are shown where each data point represents a thread. An exponential
decrease in performance is observed for the baseline single-threaded memory management routines when scaling with the number of threads. The performance
of the optimized version of the code improves significantly with the use of threaded memory initialization routines. (Center) Total simulation time of MPAS-
Ocean using the version with threaded initialization is compared with the baseline version, (Right) and the corresponding speedups are shown. Apart from
improving the performance of the memory initialization routines, the overall application performance shows speedups of up to 2.5× at full threading. This
performance boost is also an effect of improved data locality with respect to each thread. All these runs were performed on one node of the Cori system.

shown in Fig. 10. It can be observed that with increasing thread
count (and decreasing MPI process count), the peak memory
requirement is dramatically reduced at any given concurrency
by up to an order of magnitude. This reaffirms our initial
motivation to implement threading in this application.

Fig. 10 (right) shows the peak memory requirements per
node with respect to the thread-process configurations on a
node. In all cases a node operates on the same problem size
with the same number of sockets and cores. As such, the
figure quantifies the ability of hybrid MPI+OpenMP solution
to dramatically reduce the memory requirements per node.
For example, at 32 nodes, the memory requirements have
been reduced by almost 5×. Beyond 32 nodes, memory
requirements of MPI-only version have saturated while those
for the hybrid implementations continue to decrease.

Intel Xeon Phi and GPU-accelerated systems rely on a
two-tiered approach with a hierarchy of low-capacity, high-
bandwidth memory backed by high-capacity, low-bandwidth
memory. On a Knights Landing-based system like the Cori
Phase II, there may be less than 16 GB of high-bandwidth
memory per node. Simultaneously, the process concurrency
in an MPI-only regime will increase to over 60 processes
per node. As shown in Fig. 10 (left), the resultant 266MB
per process limit will likely exceed the minimum memory
requirements per process in MPAS-Ocean, and will thus not
fit in the high-bandwidth level of memory. Conversely, the
hybrid configurations can easily fit in high-bandwidth memory
and will thus be able to effectively exploit its performance
potential.

V. VECTORIZATION

Vectorization provides the single-instruction multiple-data
(SIMD) parallelism within each core on the compute proces-
sors. The available vector units on modern processors have
increasingly wider widths, with common Intel Xeon CPUs,

including Ivy Bidge and Haswell processors, containing 256-
bit wide vector units, and Intel Xeon Phi series of processors
containing vector units of 512-bit width. To gain a reasonable
performance on such architectures, it is necessary to utilize
these SIMD units effectively. Modern compilers are sophis-
ticated enough to perform auto-vectorization and generate
vectorized code without requiring a programmer to explicitly
implement vectorization.

To facilitate efficient auto-vectorization, the code must sat-
isfy certain conditions. Among them is that the loops to be
auto-vectorized should not have backwards loop dependencies.
For effectiveness, it is also desired that the data involved in
these loops be stored contiguously in the memory to avoid
excessive data gather/scatter operations. In our case with
MPAS-Ocean code, since the vertical depths are represented
by structured and contiguous data, the innermost loops over
these vertical levels are the candidates for vectorization.

In Fig. 11, we show the observed performance of the various
vectorized versions generated by the Intel compiler version 16
on the Cori system. The different vectorized versions shown
are:

• Auto-vectorization completely disabled (with compiler
flags −no− vec and −no− simd).

• Default compiler auto-vectorization with the base
threaded code (with compiler flags −vec and −simd).

• Code containing the OpenMP SIMD directives added
for the loops over the regular vertical levels (with flags
−simd and −no− vec).

• Compiler auto-vectorized code with the OpenMP SIMD
directives included (compiled with flags −vec and
−simd).

• Fully compiler auto-vectorized code with aligned mem-
ory (using flags −align, −vec, and −simd).

These experiments show that vectorization has almost no
effect on the overall performance of MPAS-Ocean. This is
a result of the primary performance limiting factor being



MPI-only 32x1 16x2 8x4 4x8 2x16

# MPI Procs. × # OMP Threads

101

102

103

104

S
im

u
la

ti
o
n
 T

im
e
 [

s]

static

static,100

static,10

static,1

dynamic

dynamic,10

guided

MPI-only 32x1 16x2 8x4 4x8 2x16

# MPI Procs. × # OMP Threads

101

102

103

104

E
n
e
rg

y
 (

K
J)

static

static,100

static,10

static,1

dynamic

dynamic,10

guided

MPI-only 32x1 16x2 8x4 4x8 2x16

# MPI Procs. × # OMP Threads

101

102

103

104

C
o
m

p
u
te

 T
im

e
 [

s]

static

static,100

static,10

static,1

dynamic

dynamic,10

guided

MPI-only 32x1 16x2 8x4 4x8 2x16

# MPI Procs. × # OMP Threads

10-1

100

101

M
P
I 
T
im

e
 [

s]

static

static,100

static,10

static,1

dynamic

dynamic,10

guided

Fig. 7. Performance with different OpenMP thread scheduling policies on 4 nodes of the Cori system: (Top-left) Total simulation time of the hybrid MPAS-
Ocean implementation is shown for seven scheduling policies: static, static with chunk size 100, static with chunk size 10, static with chunk size 1, dynamic,
dynamic with chunk size 10, and guided. Data is shown for different configurations of MPI processes and OpenMP threads on each node, with number of
threads increasing from left to right. (Top-right) Corresponding energy consumptions in KJoules is shown for each run. (Bottom-left and bottom-right) Detailed
timings of each thread, representing a dot, are shown for sum of compute-only and MPI routines of the simulation are shown, respectively.

data movement, which is exacerbated by significant jumping
in memory due to the unstructured nature of the data and
buffer padding with maximum vertical depth. At low con-
currencies, one would expect the time to be dominated by
local computations. In order to understand why vectorization
(even completely disabling it) has little effect on MPAS-Ocean
performance, we first constructed a Roofline Model [8], [9],
[10], [11] for MPAS running on Cori (see Fig. 12). We plot
both the L1 and DRAM arithmetic intensities (flops/L1 bytes
and flops/DRAM bytes, respectively) on this model. Although
the L1 arithmetic intensity is very low at about 0.05, the L1
bandwidth is significantly high and, thus, doesn’t constrain
performance. Conversely, although DRAM arithmetic intensity
is still low at about 0.2, the DRAM bandwidth on Cori is much
lower and, thus, bounds the performance. On this system,
with 256-bit vector units, the peak floating-point performance
per node is roughly 1 TFlops/s. However, with vectorization
disabled, the effective peak would drop to about 256 GFlop/s.
Even though this is about 4× lower than peak, this flops ceiling
(bound) on performance is still about 10× higher than the
DRAM bound. As such, it should come as no surprise that

for this heavily DRAM-limited code, vectorization has little
impact.

VI. CONCLUSIONS AND FUTURE WORK

Overall our study shows that the OpenMP threaded MPAS-
Ocean code delivers better performance at high concurrencies
when compared with the original flat MPI version. This
indicates the importance of the use of shared memory paral-
lelism as the core counts on modern processors increase. Our
performance analysis indicates that memory accesses tends
to dominate over the computations, making MPAS-Ocean a
memory-bound code at low node concurrency. Future work
will focus on improving the memory access patterns through
data reorganization so as to allow better data re-use across the
threads while improving cache utilization. In MPAS-Ocean,
at high concurrencies, communication time dominates, and
we plan to mitigate this overhead via communication hiding
schemes through non-blocking data movement across the pro-
cesses. This work is also paving the way to make the MPAS-
Ocean code future-ready for many-core processors such as
Intel’s Knights Landing, which will drive the forthcoming



MPI-only 32x1 16x2 8x4 4x8 2x16

static

static,100

static,10

static,1

dynamic

dynamic,10

guided

# Nodes = 1

MPI-only 32x1 16x2 8x4 4x8 2x16

# Nodes = 2

MPI-only 32x1 16x2 8x4 4x8 2x16

# Nodes = 4

MPI-only 32x1 16x2 8x4 4x8 2x16

# Nodes = 8

101

102

103

S
im

u
la

ti
o
n
 T

im
e
 [

s]

MPI-only 32x1 16x2 8x4 4x8 2x16

static

static,100

static,10

static,1

dynamic

dynamic,10

guided

# Nodes = 1

MPI-only 32x1 16x2 8x4 4x8 2x16

# Nodes = 2

MPI-only 32x1 16x2 8x4 4x8 2x16

# Nodes = 4

MPI-only 32x1 16x2 8x4 4x8 2x16

# Nodes = 8

102

103

E
n
e
rg

y
 (

K
J)

Fig. 8. A summary of the performance with different OpenMP thread scheduling policies and MPI×OMP configurations on the Cori system is shown as
heat maps for 1, 2, 4, and 8 nodes. The top set represents the total simulation time in seconds, and the bottom set represents total energy consumption in
KJoules.

1 2 4 8 16 32 64 128 256 512

Number of Nodes

101

102

103

S
im

u
la

ti
o
n
 T

im
e
 [

s]

MPI-only

32x1

16x2

8x4

4x8

2x16

1 2 4 8 16 32 64 128 256 512

Number of Nodes

10-1

100

101

102

S
p
e
e
d
u
p

32x1

16x2

8x4

4x8

2x16

1 2 4 8 16 32 64 128 256 512

Number of Nodes

100

101

102

103

E
n
e
rg

y
 (

K
J)

MPI-only

32x1

16x2

8x4

4x8

2x16

Fig. 9. Strong scaling with different MPI processes and OpenMP thread configurations on the Cori system with respect to increasing number of nodes. Each
node provides a total of 32 cores. The total simulation times (left), corresponding speedups w.r.t. MPI-only on 1 node (center), and energy use (right) are
shown for static scheduling.

Cray XC40 Cori phase 2 supercomputer at NERSC.

ACKNOWLEDGEMENTS

This research used resources in Lawrence Berkeley National
Laboratory and the National Energy Research Scientific Com-
puting Center, which are supported by the U.S. Department
of Energy Office of Science’s Advanced Scientific Com-
puting Research program under contract number DE-AC02-
05CH11231. Abhinav Sarje, Samuel Williams, and Leonid
Oliker were supported by U.S. Department of Energy Office of
Science’s Advanced Scientific Computing Research program
under contract number DE-AC02-05CH11231. Douglas Jacob-
sen and Todd Ringler were supported by U.S. Department
of Energy Office of Science’s Biological and Environmental
Research program. This material is based upon work supported

by the U.S. Department of Energy, Office of Science, Office
of Advanced Scientific Computing Research, Scientific Dis-
covery through Advanced Computing (SciDAC) program.

REFERENCES

[1] T. Ringler, M. Petersen, R. L. Higdon, D. Jacobsen, P. W. Jones, and
M. Maltrud, “A multi-resolution approach to global ocean modeling,”
Ocean Modeling, vol. 69, no. C, pp. 211–232, Sep. 2013.

[2] H.-S. Na, C.-N. Lee, and O. Cheong, “Voronoi diagrams on the sphere,”
Computational Geometry, vol. 23, no. 2, pp. 183–194, 2002.

[3] J. Chen, X. Zhao, and Z. Li, “An Algorithm for the Generation of
Voronoi Diagrams on the Sphere Based on QTM,” Photogrammetric
Engineering & Remote Sensing, pp. 79–89, Jan. 2003.

[4] A. Sarje, S. Song, D. Jacobsen, K. Huck, J. Hollingsworth, A. Malony,
S. Williams, and L. Oliker, “Parallel performance optimizations
on unstructured mesh-based simulations,” Procedia Computer
Science, vol. 51, pp. 2016–2025, 2015, international Conference
On Computational Science, (ICCS 2015). [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050915012740



1 2 4 8 16 32 64 128 256 512

Number of Nodes

102

103

104

105

V
m

R
S
S
 P

e
r 

P
ro

ce
ss

 [
M

B
]

MPI-only

32x1

16x2

8x4

4x8

2x16

1 2 4 8 16 32 64 128 256 512

Number of Nodes

102

103

104

105

V
m

R
S
S
 P

e
r 

N
o
d
e
 [

M
B

]

MPI-only

32x1

16x2

8x4

4x8

2x16

Fig. 10. Strong scaling memory usage per process (left) and per node (right) are shown.

2x16 4x8 8x4 16x2 32x1 MPI-only

# MPI Procs. × # OMP Threads

0.7

0.8

0.9

1.0

1.1

1.2

1.3

S
p
e
e
d
u
p
 o

v
e
r 

N
o
 V

e
ct

o
ri

za
ti

o
n

Compiler Auto-vectorization
OpenMP SIMD Directives
Compiler Auto and OpenMP SIMD vectorization
Full Vectorization + Aligned Memory

MPI-only 32x1 16x2 8x4 4x8 2x16

# MPI Procs. × # OMP Threads

0.7

0.8

0.9

1.0

1.1

1.2

1.3

S
p
e
e
d
u
p
 o

v
e
r 

N
o
 V

e
ct

o
ri

za
ti

o
n

Compiler Auto-vectorization

OpenMP SIMD Directives

Compiler Auto and OpenMP SIMD vectorization

Full Vectorization + Aligned Memory

Fig. 11. A relative performance comparison of different vectorized versions of the equation of state routine (left) and diagonal solve routine (right),
with respect to no vectorization are shown. The different vectorized versions are: default compiler auto-vectorization (−vec − simd), code with OpenMP
SIMD directives added to the loops (−simd − no− vec), auto-vectorized code containing the OpenMP SIMD directives (−vec − simd), and code with
aligned memory (−align − vec − simd). It can be seen that vectorization almost no effect on the overall performance of this routine, indicating that data
movement is the performance limiting factor.

[5] S. S. Shende and A. D. Malony, “The Tau Parallel Performance System,”
High Performance Computing Applications, vol. 20, no. 2, pp. 287–311,
May 2006.

[6] “Performance Application Programming Interface (PAPI),” 2016, http:
//icl.cs.utk.edu/papi.

[7] OpenMP Application Program Interface, Version 4.0, July 2013.
[8] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful

visual performance model for floating-point programs and multicore
architectures,” Communications of the ACM, vol. 53, no. 4, pp. 65–76,
Apr. 2009.

[9] S. Williams, “Auto-tuning performance on multicore computers,” Ph.D.
dissertation, EECS Department, University of California, Berkeley,
December 2008.

[10] T. Ligocki, “Roofline toolkit.” [Online]. Available: https://bitbucket.org/
berkeleylab/cs-roofline-toolkit

[11] S. Williams, B. V. Stralen, T. Ligocki, L. Oliker, M. Cordery,
and L. Lo, “Roofline performance model.” [Online]. Available:
http://crd.lbl.gov/departments/computer-science/PAR/research/roofline/ 10-3 10-2 10-1 100 101 102 103

Arithemetic Intensity (FLOPs/Byte)

100

101

102

103

G
FL

O
P
s/

se
c

L1
 C

ac
he

D
RA

M

Theoretical Peak

No Vectorization

Empirical Peak

MPAS-O Simulation/L1

MPAS-O Simulation/DRAM

Fig. 12. A roofline analysis of the MPAS-Ocean code on the Cray XC40
Cori Phase 1. This plot shows that the MPAS-Ocean code is heavily memory
bound since the achieved performance with respect to DRAM is almost at the
peak DRAM bandwidth.


