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Abstract—The typical use case for Model Specific Register
(MSR) data is to provide application profiling tools with
hardware performance counter data (e.g., cache misses, flops,
instructions executed). This enables the user/developer to gain
understanding about relative performance/efficiencies of the
code overall as well as smaller code sections. Due to the
overhead of collecting data at sufficient fidelity for the required
resolution, these tools are typically only run while tuning a
code.

In this work we present a substantially different use case
for MSR data, namely system wide synchronized and relatively
low fidelity collection as a system service on NCSAs 27,648
node Blue Waters platform. We present which counters we
collect, the motivation for this particular data, and associated
overhead. Additionally we present some associated pitfalls, how
we address them, and the effects. We finally present some
analysis results and the insight they provide about applications,
system resources, and their interactions.

I. INTRODUCTION

NCSA’s Blue Waters machine is a 27,648 node Cray
XE/XK compute platform with a Gemini interconnect. Ap-
plication execution on a platform of this size, especially in
the face of contention with other applications for shared re-
sources, such as the Gemini High Speed Network (HSN) and
Lustre parallel file system, can be subject to relatively wide
performance variation. It can be difficult for the application
developers and users to unravel the reasons behind such
variation given all the background interaction. Additionally
it can be difficult from an administrative perspective to
assess how well the platform resources are being utilized
beyond gross measures of node allocations which may
be high because users over allocate and under utilize the
resources.

In order to better understand, from an operational perspec-
tive, how users and applications are utilizing the underlying
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computational resources and how well matched those re-
sources are to the applications being run on them, the Blue
Waters staff has been increasing their level of system wide
monitoring. In addition to monitoring the shared resources
mentioned above, we have begun monitoring node level
resource utilization by periodically reading the Interlagos
processor’s Model Specific Registers (MSRs) [1].

Collection and processing of this data, even at the rel-
atively coarse granularity of once per minute, enables us
to gain insight into application level processor and memory
level behavioral characteristics. This paper presents details
on data collection methodologies, impediments and pitfalls,
and counters of interest and is organized as follows: Sec-
tion II describes the motivation for this work. In Section III
we present the counters and data that are of interest in
our system. Details of the architecture and implementation
of our MSR collection as a system service are presented
in Section IV. Data validation and collection overhead are
discussed in Section V. In Section VI we describe support
for analysis. In Section VII we present use cases for the data
through analysis of targeted applications run in production
on Blue Waters. Finally, we conclude in Section VIII.

II. MOTIVATION

NCSA’s decision to collect hardware performance counter
data was primarily driven by the following factors: system
wide reporting demands from interested parties such as
funders and investors, the need for application performance
analysis by HPC center support staff, and the need for
performance information by the Blue Waters Science and
Engineering partners. The funders and investors typically
want to know about system performance aggregates such
as floating point or aggregate memory bandwidth rates in
order to ascertain how well the various computing resources,
as a whole, are being utilized. The center staff want to
know which applications and which users are not effectively
utilizing the resources allocated for the workloads running
on the system in order to help them run more effectively
and increase overall system throughput. Easy identification
of offending application performance can facilitate working
on the so called low hanging fruit in terms of performance



improvement. The Science and Engineering partners in some
cases have similar demands as center staff but additionally
need to assess the aggregate values for use in performance
projection and usage reporting to various agencies. Lastly,
access to this type of data would enable the users to
extract high level performance metrics in order to assess
performance of runs they did not profile or to determine
how tuning of an application using low level, high overhead,
profiling tools has changed the gross execution efficiency.
While resolution is not high enough for fine grained code
tuning, it can be very useful for coarse grained comparisons
to understand the evolution of utilization characteristics due
to code and platform changes.

In particular, collection of system wide counter data by
core, floating point unit, and NUMA domain enables the
center staff to investigate possible misconfigured batch jobs
where users are unintentionally not using all of the resources
available within the nodes being allocated. The Cray XE/XK
systems use an application launch utility called aprun to
place applications on the compute nodes allocated to a job.
The complexity of the dual-socket nodes in conjunction with
the two NUMA domains per CPU, the four floating point
units per domain, and the two integer cores per floating point
unit can lead to less than optimal task and thread placement
due to user mistakes and/or lack of a complete understanding
of this hierarchy and associated performance implications. A
wrapper to aprun is one way to catch incorrectly configured
application launches but affinitization can be implemented
from within an application that makes parsing impracti-
cal. Significant insight can be gained through analysis and
visualization of per core, per floating point unit, and per
NUMA domain performance counter data grouped according
to jobs/applications over their execution times. Time series
plots of relevant counter data for a particular application
run should show where placement of tasks and threads only
utilize cores on one socket per node, floating point units on
one NUMA domain per CPU, etc.

Collection of hardware performance counters has also
been of interest at other HPC sites. In particular at TACC,
such information is collected via TACCStats [2]. The data
is not available for processing at run-time, but rather 24
hours worth of data is downloaded off the nodes once every
24 hours. The collection period for the actual data on the
TACC computational resources is 10 minutes, which also
impacts the resolution of analysis.

III. COUNTERS OF INTEREST

The Blue Waters project has had a goal of employing
performance modeling, using hardware performance coun-
ters, as part of its support goals since its initial year of
operation. During the initial deployment phase of Blue
Waters, representative applications were identified for the
first year workload. These applications were analyzed using

a process developed by Hoefler [3]. In this process, the on-
node performance of an application is characterized by a
method similar to the roofline modeling method of Williams
[4] through use of floating point instructions completed, total
instructions completed, memory accesses, total loads and
stores, and cycles stalled. As shown in [3], this type of
analysis can help in determination of the potential for perfor-
mance improvement in an application and in identification
of the limiters of application performance. For the initial
analysis work, a variety of custom performance analysis
tools were used to collect detailed performance counter
information across the processes of the target applications.
While we were able to perform this work as a dedicated
study, the real target has continued to be continuous system
wide collection and analysis in order to characterize the
behaviors and interactions of all applications as they are
run natively. Additionally we want to track how these
characteristics change due to both application and platform
changes.

There are a limited number of registers available for
counting performance related hardware events. Our current
set of performance counters used in system wide collection
on Blue Waters, as of the time of this publication, is
described in Table I. This set uses the entire set of registers
available for both core and uncore counters. Thus adding
another counter implies dropping one of those listed.
Alternatively we could move to a more statistical approach
where we sample more counters for shorter intervals and
make assumptions about how well these intervals represent
the whole run time. Currently we have chosen to use a
constant set that fits the number of available registers.
The names in the Counter column of the table are user
setable and were chosen to match a set of PAPI [5] events
with the same definitions. The related PAPI counters
of interest, ordered in the same order as Table I, are
PAPI_TOT_CYC, PAPI_TOT_INS, PAPI_FP_OPS,
PAPI_VEC_INS, PAPI_L1_DCM, PAPI_TLB_DM.
Higher resolution profiling using statistical sampling of
a larger set of counters for specific application runs can
still be performed by users on a case by case basis using
the Cray Performance Measurement & Analysis Tools
(CPMAT) [6] or any of a number of other performance
profiling and analysis tools.

IV. MSR COUNTER SAMPLING ARCHITECTURE

Our goals in collecting hardware performance counters as
a system service are to provide: 1) continuous and uniform
system-wide counter collection, 2) analysis results during
run-time and within the sampling interval (currently 60
seconds) and 3) a long term repository of this information
for historic comparison.

To accomplish these goals we chose to utilize the Model
Specific Register (MSR) interface [7] for access to hardware
performance counter data. We further chose to utilize the



Counter Definition Note
TOT_CYC Unhalted clock cycles Per core
TOT_INS Retired instructions Per core
RETIRED_FLOPS Retired floating point instructions Per core
VEC_INS Retired vector instructions Per core
L1_DCM L1 data cache misses Per core
TLB_DM Data translation lookaside buffer misses Per core
L3_CACHE_MISSES L3 data cache misses Per L3
DCT_PREFETCH Memory (DRAM) prefetch requests Per DRAM controller (DCT)
DCT_RD_TOT Memory (DRAM) read requests including prefetches Per DCT
DCT_WRT Memory (DRAM) write requests Per DCT

Table I
SELECTION OF COUNTERS CURRENTLY BEING COLLECTED SYSTEM WIDE ON BLUE WATERS

OVIS/LDMS [8] infrastructure for collection, transport, rate
analysis, and storage of the counter data. The reason for
using the MSR interface is its simplicity and access to
process independent data. The reason for choosing the
OVIS/LDMS infrastructure is that it was already being
used for collection and transport of other system level data
and the only additional work was writing a MSR specific
sampler plugin. Unlike other LDMS data sampler plugins
(or samplers), which read a fixed data source, the LDMS
MSR sampler must operate in an environment where the
data sources (MSR counters) may be dynamically reset both
by system and user processes. In order to enable users to
utilize other tools for performing their own performance
counter profiling we must also ensure that our system wide
monitoring detects such use and does not interfere with the
related measurements. Additionally, once a user is finished
profiling, we want to resume our MSR sampling on the
released resources and ensure we are still sampling the
original list of counters. These differences put additional
design requirements on the LDMS MSR samplers. The
resulting implementation details are discussed in this section.

A. Background on LDMS

The Lightweight Distributed Metric Service (LDMS) [8]
has been in use, for more than 2 years, on Blue Waters for
collection of system resource utilization information such as
the Gemini network performance counters, Lustre counters
(e.g., reads, writes, opens, closes), and memory and CPU
utilization. LDMS was chosen for its low host overhead
and large fan-in characteristics. The MSR counter data are
largely per-core data and significantly increase our number
of metrics collected (roughly doubling from 200 metrics/host
to 400 metrics/host). Low-overhead collection continues
to be important as we don’t want to adversely impact
application performance through collection of this additional
data. Large fan-in ratios continue to be a requirement of the
transport as we are not procuring additional resources to
accommodate the MSR data collection.

LDMS uses a plugin architecture, with the same ldms
daemons running on each node. Functionalities are differen-
tiated by the plugins and configuration files used. Daemons

running sampling plugins run on the nodes; daemons that
aggregate the data from the samplers via RDMA over
Gemini run on service nodes; finally the daemons that
aggregate also run store plugins that write the data to named
pipes for off-platform analysis and storage. Any daemon in
the hierarchy can be queried for its current data. Data is
stored in a metric set data structure which includes the data
values and a single timestamp to be associated with those
values. Only the most recent metric set data values for any
given component is retained in the daemon; this minimizes
the memory footprint.

Prior to initial OVIS/LDMS deployment on Blue Waters
we performed a variety of tests to ensure minimal impact
on application performance [8]. While we have not yet
performed the same level of testing with the addition of the
MSR sampler, the testing we have done indicates it should
be minimal. We have also established that our current fan-in
ratio of around 7,000:1 for normal operation and 14,000:1
in the case of fail-over is sufficient to handle this additional
load at our current collection interval of 60 seconds.

B. Design Requirements

There are a number of practical considerations that must
be addressed in enabling MSR counter collection as a
system service. From the perspective of data collection and
interaction:

• there are fewer address spaces available for specifying
and collecting counters in comparison with the full
body of counters available

• the desired counters may dynamically change at the
system and per-application level, and even over time
within the same application

• the user tools may use the available address space for
the same or conflicting counters

• illogically assigned values to the counter address space
may result in problems to the node, necessitating node
reboot

• the user has pre-expectations of counter names and
values based on experiences with application profiling
tools, such as PAPI (e.g., [5]).



In general, these are rather unique constraints for system
software with respect to support for dynamic reconfiguration
and discovery and handling of externally-invoked conflicting
states.

In addition, an application user or system administrator
should not have to make a code call, link, or change to obtain
the default set of collected counters. In order to otherwise
take advantage of the service, changing the counters on-
demand can be accomplished via a command line utility
which can be called dynamically. For example a script can
be triggered to automatically invoke a change of counters or
frequency of collection, based on conditions of interest.

There are system-support constraints as well. In general,
LDMS is installed in the image and frequent updates to the
image are impractical. Therefore enabling changes to the
collectors and the counters must be handled other than in
code.

Finally, from a data processing perspective, we must be
able to recognize and handle when the counter identities
have changed, in order to make valid inferences from the
data.

C. Configuration and Collection

While using the MSR interface is conceptually simple
(i.e., write a control register and read a result register
in /dev/cpu/CPU#/msr), understanding what to write,
knowing what is being read, and ensuring non-interference
can be quite involved and is described here, at a high level,
for the AMD Family 15h Models 00h-0Fh processors. The
information presented was obtained from the BIOS and
Kernel Developer’s Guide (BKDG) [1].

Performance Event Select registers are defined to be:
MSRC001_020[A,8,6,4,2,0]. As an example, in order
to count an event of interest for core 0 in the regis-
ter controlled by control register 0xc001020 one would
write the 64 bit value defining the counter of interest
to /dev/cpu/0/msr/0xc001020 and read the corre-
sponding values from /dev/cpu/0/msr/0xc001021.
In order to define the counter of interest, the bit fields defined
below must be populated for the particular event of interest:

• Bits 63:42 Reserved
• Bits 41:40 HostGuestOnly: count only host/guest

events. Read-write
• Bits 39:36 Reserved
• Bits 35:32 EventSelect[11:18]: performance event se-

lect
• Bits 31:24 CntMask: counter mask. Read-write. Con-

trols the number of events counted per clock cycle.
• Bits 23 Inv: invert counter mask.
• Bits 22 En: enable performance counter.
• Bits 21 Reserved
• Bits 20 Int: enable APIC interrupt.
• Bits 19 Reserved
• Bits 18 Edge: edge detect

• Bits 17:16 OsUserMode: OS and user mode
• Bits 15:8 UnitMask: event qualification
• Bits 7:0 EventSelect[7:0]: event select

An event is defined by an event code and associated unit
mask. As an example, RETIRED_FLOPS in Table I refers
to information obtained using event code 0xc003 (Retired
Floating Point Ops or FLOPS) along with the appropriate
UnitMask value. UnitMask bit positions for this event are
defined as follows:

• Bit 7 Double precision multiply-add FLOPS. Multiply-
add counts as 2 FLOPS.

• Bit 6 Double precision divide/square root FLOPS.
• Bit 5 Double precision multiply FLOPS.
• Bit 4 Double precision add/subtract FLOPS.
• Bit 3 Single precision multiply-add FLOPS. Multiply-

add counts as 2 FLOPS.
• Bit 2 Single-precision divide/square root FLOPS.
• Bit 1 Single-precision multiply FLOPS.
• Bit 0 Single-precision add/subtract FLOPS.

For this example configuration if we wanted all (both
single and double) precision FLOPS counts the UnitMask
value would be 0xFF and we would write the control
word 0x43ff03 into /dev/cpu/0/msr/0xc001020.
We would then periodically read the corresponding counts
from /dev/cpu/0/msr/0xc001021. Likewise if we
wanted to read the same counters for all cores we would
write the same control word to an appropriate msr reg-
ister for each core (e.g. for core 1 we would write to
/dev/cpu/1/msr/0xc001020). It is important to note
that not all core counters can be counted into all core
registers. Which ones can be used is defined on a per event
code basis in the BKDG. Note that the acronym FLOPS here
refers to a count of floating point operations and not a rate.

In order to support the operational constraint of requiring
changes in the image, as well as enabling the flexibility of
investigating different options of counters and the registers,
the options for the counters are defined in a configuration file
which is loaded as part of the MSR sampler configuration.
Based on system administrator and user input, we have
down-selected the counters to a well-defined set, listed in
Section III whose number matches the number of registers
available for counters.

A representative and functional configuration file is pro-
vided as part of the code release. The fields include the
event code, UnitMask, address of the control register, and the
address of the corresponding counter register. These provide
sufficient information for setting the control registers for the
counters and if selection is made among them at sampler
configuration time, conflicts, if any, are identified in the
log file but not used. The configuration file also provides
the flexibility for the user to define their own names and
corresponding information. Checking for conflicts and sanity
settings is not performed in this case and the user could



potentially cause instability or crash the host through use of
erroneous control registers and values.

The system service provides a command line utility to
specify the counters to collect, to halt and continue collec-
tion, and to reassign a counter to a new or previous collected
option. Counter specification in the configuration file, and
thus in the command line utility, is in terms of counter
names which we have defined to be as identical as possible to
the PAPI naming convention. The administrator/user is only
responsible for using the naming convention, not the raw
addresses, eliminating the potential for harmful assignment
(given a valid configuration file). System administrators,
and other system services and users to whom the utility
is exposed, can also dynamically change which counters
are being collected. Details of this are given in the next
subsection.

D. Assigning and Reassigning Counters

The LDMS command line interface, ldmsctl, accepts the
commands below. It can be used in the init script as well as
at runtime, for example, invoked in the prolog/epilog scripts.

Functions:
• initialize - initializes the plugin
• add - add a counter metric to the set.
• finalize - creates the set after the adds.
• halt - halts collection for this counter or all counters.

Values of zero will be reported for all metrics for this
counter.

• continue - continues collection for a counter or all
counters after a halt.

• rewrite - rewrites a counter’s register variable or all
counter’s variables.

• reassign - replace a metric in the set with another
one (via reassignment of a counter’s register variable).
Must be same size (numcores vs. single valued).

• ls - writes information about the intended counters to
the log file.

The commands are designed to enable setting the initial
counters, changing counters, and resetting them if they
have been changed underneath. The expected usage of the
commands are described below.

At the time of LDMS configuration, the initial set of
plugins are identified. This would be done by the system
administrator. First, the initialize command is used to
specify the configuration file for the counters; information on
the system relevant to the counters, such as cores per numa
node. This initialization is done per node, so that at this time
a Component Id that can be used at the output data store to
associate the values with a particular source node is also
specified. This is followed by a series of add calls where
counters of interest are specified. For any given counter
added, a metric in the set is added for both the counter
register and for the values. The finalize call is used to
indicate that all the counters of interest have been specified.

Within the finalize call, the appropriate control registers
are written to enable collection of the counters of interest.
This includes checks for where multiple counters have been
assigned to the same control register (via specifications in
the configuration file). The counters are added to the set in
the order they are specified. This results in a metric set like
that shown in Figure 1.

The identities of the counters are not necessarily static.
This is because they can be defined in a configuration
file where the label to Event Select value mapping can
be arbitrary and the counter number depends on loading
order. Because of this we generically identify metric names
using the labels ”Ctr0, Ctr1, ...”. These labels refer to the
decimal value written to the corresponding Event Select
register. The individual components for which data is being
collected use labels ”Ctr0 c00, Ctr0 c01, ...” to refer to
the decimal values being read from their respective Event
Counter registers. In the Comma Separated Value (CSV)
output, the value of the first entry is the identity of the
counter in the form of the Event Select register value and
the subsequent entries are the N values (depending on if it
is a per-core metric and the number of cores) for the metric
as read from their Event Counter registers. As an example,
if ”Ctr0” referenced the counter value corresponding to the
Event Select register programmed for the RETIRED_FLOPS
described in Section IV-C, its value would be the decimal
equivalent of 0x43ff03 or 4456195 and all counters with
the same ”Ctr0” prefix would be the counts associated with
the referenced cores. This format also enables the current
identity of the counter to be found out both in queries to
any ldms daemon and in any entry in the stored data. It does
however, lead to some complexities in analysis, as described
in Section VI.

Figure 1. Metric set contains both the control register value (Ctr0) and
the data values (Ctr0 00 - Ctr0 15) for this 16 core processor.

At this point, the collection of counters via LDMS can be
started. The remaining commands pertain to counter updates
during the collection.

For each counter, the control register is checked before



the counter is read. This minimizes the chance that the
counter has been changed by an external process. More
details are given on this in Section IV-E. If this has occurred,
the rewrite command can be called to rewrite a control
register(s) to the expected value and values of zero are
reported as long as the counter register is not the expected
value. This is typically done in the prolog/epilog scripts in
order to reset the counters to the defaults for the next user.

The reassign command can be invoked during run time
to change a counter being collected. This enables users to
take advantage of the system service to collect counters of
interest. The service can also be suspended using the halt
command. The halt command bypasses the check for the
register as well as the data. Collection is restarted upon
issue of continue. halt is a deliberate suspension of
the checks; as opposed to when the check occurs and fails
on the counter’s register value. The halt, continue, and
rewrite can work on a single counter or all as indicated
by the counter name or the ALL keyword.

The ls command can be used to dump the current identity
of the counters to a log file.

E. Non-Interference with User Performance Analysis

Non-interference with user-invoked profiling tools that
use the same MSR registers is ensured in the following
way. Our procedure for reading the counters includes a
check of the Event Select register before the Event Counter
register is read. This enables the service to identify if
the event parameters for a register have been modified. If
they have been modified, the corresponding counter register
and counter values in the metric set are set to zero. Non-
zero values will be reported until the counter register value
matches the currently configured value. Thus, external user
modification of the Event Select registers overrides any of
the system services functionality.

Since the read of the Event Select and Event Counter
registers is not atomic, there is a slight chance that the Event
Select register will have been changed between checking its
value and reading the Event Counter register. This cannot
be obviated, by rechecking the Event Select register after
the Event Counter read, for the same reason. We do not
expect this race condition to occur frequently and it should
cause at most a single incorrect value that should appear as
a counter wrap and should be generally detectable in the
data processing step.

The change of the counter assignment is generally de-
tectable in the data because both the counter name and the
counter values are reported as zero until the counter is reset
again. The command line utility to reassign the counter to
the desired option and to continue collection is integrated
into the init scripts for the daemon as a function, called
reload, that rewrites the counter registers to match the
configuration. The system resource manager calls the reload
function on each compute node from the job during its

epilogue script in case the user has modified it as part of
their job run.

V. DATA VALIDATION

We tested the validity of the MSR data being collected
and the streaming calculations (Section VI-A) performed
on the data in the following manners. Memory Bandwidth:
To check our memory bandwidth measurements we used
the STREAM sustainable memory bandwidth benchmark to
generate a known amount of memory read traffic over a
known time interval and compared the average calculated
memory bandwidth as well as the total traffic streamed, as
measured by our LDMS MSR sampler. The benchmark was
run with 4 OpenMP threads that were pinned to a single
NUMA domain. It used a memory size of 9155.3 MB, and
the delivered bandwidth was calculated as the average of
200 iterations of the Copy+Scale+Add+Triad loops. While
not a highly optimized build, the benchmark achieved nearly
50% of theoretical peak as measured by both STREAM and
LDMS with a small margin of error. Results are shown in
Table II.

STREAM results MSR counts from LDMS Difference
11625 MB/s 11356 MB/sec 2.3 %

Table II
STREAM MEMORY BANDWIDTH AS MEASURED

Floating Point Operations (FLOP): The HPL benchmark
was chosen as the validation test for this metric because
it performs its own FLOP accounting and provides this as
output upon completion. We ran multiple HPL jobs though
the batch system and summed the per minute FLOP rates
across the nodes used. These per minute sums were graphed
to confirm the average FLOP rate recorded throughout the
job matched the performance reported by HPL. A simple
single node example of this process is demonstrated in
Figure 2. This validation was also used to confirm the
correctness of the realtime processing of the data files and
database insertion.

The run of HPL, shown in the figure, reported a per-
formance of 12.82 GFlops and the sustained rate measured
was 12.9 GFlops. Higher resolution runs show that the
FLOP rate of HPL runs decrease slightly near the end of
the calculation and would account for the small difference
between the measured one minute averages and the HPL
reported value.

Results are shown in Figure 2.

VI. ANALYSIS SUPPORT

A. Desired Functional Forms

In order to minimize impact on compute nodes, LDMS
typically only samples and transmits raw data. While we
want to preserve data in its raw form for future analysis,
there are many analyses and related visualizations of interest



Figure 2. Flop Validation: Single process HPL

that require processing and/or functional combinations of
the raw data. For instance, time series analysis of the data
requires the calculation of counter value differentials for
each successive pair of data points. Such computations can
be cumbersome to do entirely as a post-processing step on
the large CSV data files being generated. Currently in CSV
format, the Blue Waters non-MSR raw data amounts to ∼55
GB/day and the raw MSR data amounts to ∼93 GB/day.

In the validation and initial operation phase of the MSR
samplers, described in Section V, we had a need to process
per core counter values. We wrote a C++ application to
process the successive per core values of the FLOP rates.
This application can be generally applied to generate a
stream of summed differentials and rates from a set of
monotonically increasing fields in CSV format. It takes as
input the output of the raw CSV-formatted data pipe and
provides as output a stream of per node rates for the selected
counter. This utility has been extended to watch the end of
a file as it is being written and periodically process newly
appended data. The result is a stream of per node counter
rates written to an output stream or file. For the Blue Waters
configuration, that output stream is fed to a named pipe and
into our Integrated System Console (ISC) [9] via syslog-ng.
The ISC supports a web interface by which data from the
ISC can be queried for a variety of both raw and processed
data. Web-based time-history plots are presented and the
data can also be downloaded for further user processing.
The web-based visualizations are the source of the per job
FLOPS figures in Section VII.

Currently on Blue Waters, for our non-MSR metrics, we
run two LDMS store plugins [10]: one that writes all raw
data to a pipe through which it is forwarded to the Lustre
filesystem for long-term storage and analyses, which we

perform in parallel on Blue Waters itself; and the other
that performs in transit raw, rate, and difference calculations
on a subset of the data, that we have determined to be of
immediate interest. This derived data is written to another
pipe and forwarded on to our ISC for analysis in conjunction
with other system data.

In addition to the processing for MSR data mentioned
above, we are interested in more complex functional forms.
In order to support these complex derivations, as well as the
need to streamline the handling of the increased number of
metrics involved with the MSR counters, we are developing
more flexible in transit processing tools. Because all data
must transit an LDMS aggregator in order to be stored,
a LDMS store plugin is a convenient place for in transit
processing of the data with no adverse impact on the
compute nodes.

Recent enhancements to LDMS include support for vector
types, which are a better intrinsic match for per core data,
and a more general function store plugin. The functions as
well as input and output variables are defined in a config-
uration file. The current set of functional forms supported
operate on both scalar and vector data and includes addition,
subtraction, multiplication, and division; deltas and rates
from the previous timestep; minimums, maximums, aver-
ages, and threshold comparison. All computations include
an optional scaling factor to address issues of resolution in
the case of computations having integer outputs. Outputs
of one function can be specified to be the inputs to a
subsequent function. With our planned upgrade to the latest
LDMS version on Blue Waters, some of the current interim
processes for the MSR data manipulation can be alleviated.

B. Dynamically Changing Counter Analysis

Dynamic indication of the state of the MSR counters must
be included with the data in order to enable meaningful
analysis.

Including the Event Select register value as part of the
reported metrics, as described in Section IV-E enables the
system service to signal the counter state with respect to
the expected state. When the MSR Event Select register is
set to the configured value, using either the initialize
or reassign LDMS MSR sampler plugin directives, the
Event Select register value is reported for that counter metric
value. As discussed in Section IV-E when the Event Select
register has changed by other means, both the reported
Event Counter and Event Select values are reported as zero.
This enables distinguishing a configured change from an
externally (to the LDMS sampler) invoked change. While
this means that a second value has to be checked for each
Event Counter read, the required comparison is trivial.

The generalized support of counters and specification of
the Event Select register in the LDMS metric sets does have
some complexities with respect to processing. Currently
the metric names in the CSV header do not provide any



indication of the nature of counters being collected. Further,
the Event Select register value, displayed as a decimal
number, cannot be easily translated into the counter identity.
While such a conversion can be done in a specialized store
plugin that cross-references with the configuration file, this
adds significant complexity. In LDMS, there is an option for
assigning an additional datafield to a metric; this can be used
to write out the Event Select value in a more usable format
(e.g., use the additional datafield to hold the string name or
a simpler numerical identifier); this would be at the expense
of adding an additional metric for every counter collected.
We are currently evaluating viable approaches and tradeoffs
in handling these issues.

VII. USE CASES

This section describes our current use of
RETIRED_FLOPS and L3_CACHE_MISSES for
investigations into applications utilization of floating point
processing and memory bandwidth resources on compute
hosts. These represent 2 of the 10 MSR counters currently
being collected system wide across all 27,648 hosts of Blue
Waters and called out in Table I. RETIRED_FLOPS is
collected on a per core basis and represents the sum of the
following counts:

• Double precision multiply-add FLOPS (Multiply-add)
counts as 2 FLOPS.

• Double precision divide/square root FLOPS.
• Double precision multiply FLOPS.
• Double precision add/subtract FLOPS.
• Single precision multiply-add FLOPS (Multiply-add)

counts as 2 FLOPS.
• Single-precision divide/square root FLOPS.
• Single-precision multiply FLOPS.
• Single-precision add/subtract FLOPS.
L3_CACHE_MISSES is collected on a per NUMA node

basis and represents the number of L3 cache misses for all
cores within a NUMA node. In particular we sum counts
for the following events:

• Both prefetch and non-prefetch
• Read Block Modify
• Read Block Shared (Instruction cache read)
• Read Block Exclusive (Data cache read)
Because the L3 Cache is the Last Level Cache (LLC)

for the AMD Interlagos architecture, L3 Cache misses can
be used in conjunction with the cache line size in order to
determine the memory read bandwidth generated within a
particular NUMA node. In this work we calculate memory
read bandwidth for each NUMA node separately both in
terms of bytes/sec and as a percentage of the maximum
theoretical memory bandwidth of a NUMA domain. For
our case a L3 cache line is 64 bytes; therefore the rate
of L3 cache misses times 64 yields the generated read
traffic in bytes per second. The DRAM memory size is

32GB per socket and 16GB per NUMA node. Four floating-
point compute units or eight integer-cores share a memory
controller and a 8 MB L3 data cache and comprise a NUMA
node.

There are 4 channels per socket (2 per NUMA domain).
Each channel runs at 1,600 MT/s with a payload of 8 bytes
per transaction. Thus the theoretical peak (or maximum)
memory bandwidth per NUMA domain is 2x1600x8=25600
MB/s. This is used in our calculations to convert a bandwidth
number to a percentage of the maximum theoretical band-
width. As a point of comparison for the values presented
for the various jobs here, AMD documentation shows the
stream[11] TRIAD benchmark attaining a sustained rate of
75 GB/s out of 102.4 GB/s, or 73% of peak, for a 6276
dual-socket G34 [12]. This is comparable to values reported
by other vendors for the TRIAD benchmark [13]

The calculations presented are not based on mapping of
L3 Cache misses into location related reads. Rather we make
the assumption that each L3 Cache miss from a NUMA
node results in a 64 Byte load from memory within its
NUMA domain. In reality, a L3 Cache miss that cannot be
satisfied by a load from the local NUMA domain DRAM
will result in a request to a remote NUMA node to be
satisfied. Such a miss in our current analysis will result
in incorrect assumptions due to incorrect attribution of the
miss to a 64 Byte read from the local NUMA domain. If
this resulted in a L3 cache miss on the remote node, this
would result in double counting. If it was satisfied by the
remote node’s L3 it would still result in an incorrect 64 byte
read being attributed to the local NUMA’s DRAM. Likewise
IO through links attached to a remote NUMA node will be
incorrectly accounted for.

Our locality assumptions are only reasonably correct (with
the exception of IO devices) if the user configured processor
and memory affinity for their application runs. This was the
case in all of the use case applications presented in this
paper. Additional counters do exist for counting how many
DRAM reads and writes are generated by cores on the local
node to other nodes in the coherent fabric. Likewise there
are counters for providing similar insight into cross NUMA
domain IO traffic. Use of both of these counters can provide
insight into the level of processor data and IO device affinity
and will be incorporated into future work so the use of
processor and memory affinity can be assessed.

Figures showing FLOPS performance (in GFlops) that are
presented in the following sections are taken from web-based
visualizations of the run-time processed data described in
Section VI-A.

A. Job Analyses

The L3_CACHE_MISSES and RETIRED_FLOPS MSR
data for several applications are discussed in the following
section. These applications compose part of the suite of
applications used for the Sustained Petascale Performance



benchmark suite [3] and are representative of the workload
run on Blue Waters at the time of initial operations. Each ap-
plication has a unique computational signature as described
in [3]. These same features, reflecting how the code interacts
with the architectural features of the hardware, can be seen
in the MSR data presented here.

1) NWCHEM: The NWCHEM package [14], [15] pro-
vides a suite of scalable capabilities to perform mixed
quantum-mechanics and molecular-mechanics simulations.
The NWCHEM application used in this paper was run
using coupled-cluster singles+doubles (CCSD) that are more
memory bandwidth limited compared to triples T(CCSD)
that are floating-point intensive, complex element matrix-
matrix multiplication based. The benchmark was run on
100 Blue Waters XE nodes with 8 MPI tasks per node and
4 OpenMP threads per MPI task, and used approximately
30 GB of memory per node. Task placement and thread
affinitization were used to maintain memory allocation local
to NUMA domains. Each XE node has 64 GB of DRAM
with about 2 GB used by the OS and tmpfs. NWCHEM uses
Global Arrays for parallel data movement.

Figure 3 (top) shows a trace of FLoating point OPeration
(FLOP) rates used by the whole job as presented via the
Blue Waters web interface to the collected MSR data. The
average value is 971 GF/s or approximately 9.7 GF/s per
node. Figure 3 (bottom) shows the L3 Cache miss rate based
used bandwidth trace for a representative node in the job.
Statistics across nodes of the job are presented in Table III.
The used bandwidth rate attributed to NUMA domain 3 is
lower than that for the other three. The maximum memory
bandwidth achieved is about 14% of the theoretical peak
per NUMA domain. The saw-tooth pattern in memory
bandwidth is likely due to the differences in characteristics
of the single excitation (CCS) phase to the double excitation
(CCD) phase. The Instructions Per Cycle (IPC)
trace from reference [3] shows a similar variation although
at a much higher frequency. Further investigation into the
coincidence of the phases and the observed MSR data is
needed to determine the computational phase dependence.

NUMA Min (B/s) Max (B/s) Avg (B/s)
0 12.2e6 +/- 1.81e6 3580e6 +/- 107e6 1342e6 +/- 45.7e6
1 12.5e6 +/- 1.94e6 3564e6 +/- 115e6 1355e6 +/- 43.7e6
2 12.3e6 +/- 1.84e6 3552e6 +/- 101e6 1359e6 +/- 44.6e6
3 29.4e6 +/- 3.75e6 2119e6 +/- 72.9e6 885e6 +/- 46.4e6

Table III
NWCHEM SUMMARY STATISTICS ACROSS ALL NODES FOR EACH

NUMA DOMAIN. AVERAGE OF THE MIN, MAX, AND AVG VALUES
ACROSS ALL NODES IN (B/S).

2) NAMD: NAMD [16], [17] is a parallel molecular
dynamics code designed for high performance classical sim-
ulation of large bio-molecular systems. NAMD is designed
to overlap various force computations ranging from pair-
wise Lennard-Jones forces to short-range and long-range

Figure 3. NWCHEM Job GFlops (top). Rate of L3 Cache misses converted
to memory bandwidth in B/s and % of theoretical peak memory bandwidth
(60 sec intervals) vs. time for a representative node running within the same
NWCHEM job (bottom).

electrostatics forces. NAMD uses the Charm++ parallel
programming model and scales to hundreds of thousands of
cores though typical simulations utilize hundreds of cores.
Charm++ provides a dynamic load balancer to effectively
utilize all available resources.

The benchmark used for this evaluation of NAMD was
configured to use double precision operations for most
calculations with some single precision operations in the
Ewald sum phase. The job referenced here was run on 100
Blue Waters XE nodes with 2 communication tasks per
node and 16 threads per task. The total per node memory
requirement was approximately 5 GB. During execution, the
dynamic load-balancer uses a hierarchical strategy [18] to
balance the work across groups of processors after a user-
configurable number of steps. The amount of computational
work is sufficiently uniform across the processor groups that
the load balancer does not have a visible performance impact
as shown in in Figure 4 (top). The average FLOP rate in
Figure 4 (top) is approximately 35 GF/s or 11% of peak.
This is a typical sustained rate for NAMD.

Figure 4 (bottom) shows memory bandwidth rate derived
from L3 Cache misses for a representative node and sum-
marized in Table IV. The difference between memory band-
width rates, due to L3 Cache misses, between consecutive
domains on the same processor package (NUMA domains



1 and 3 have higher rates than 2 and 4) is possibly due to
processor-memory affinitization issues within the Charm++
runtime but will need to be studied further.

Figure 4. NAMD Job GFlops (top). Rate of L3 Cache misses in B/s and
% Peak Memory BW (60 sec intervals) vs. time for a representative node
in the job (bottom).

NUMA Min (B/s) Max (B/s) Avg (B/s)
0 203e6 +/- 21.7e6 1002e6 +/- 31.3e6 920e6 +/- 31.5e6
1 246e6 +/- 15.7e6 1325e6 +/- 17.6e6 1216e6 +/- 15.9e6
2 195e6 +/- 4.57e6 997e6 +/- 15.6e6 913e6 +/- 13.8e6
3 249e6 +/- 16.2e6 1336e6 +/- 20.5e6 1226e6 +/- 18.4e6

Table IV
NAMD SUMMARY STATISTICS ACROSS ALL NODES FOR EACH NUMA

DOMAIN. AVERAGE OF THE MIN, MAX, AND AVG VALUES ACROSS ALL
NODES IN (B/S).

3) PPM: PPM, [19] is an astrophysical, finite difference
CFD simulation code capable of investigating flash events
in early generation stars which result in explosive events
such as supernovae and modeling inertial confinement fusion
processes. It is a hybrid MPI + OpenMP code written to be
highly efficient with respect to cache utilization by use of
cache blocking, cache line flushing, volatile variables, and
data prefetching. The code also utilizes single precision.

The PPM benchmark was run on 132 Blue Waters XE
nodes with 16 MPI tasks per node and 2 OpenMP threads
per task fully using all cores on a node with appropriate
processor-memory affinitization, using approximately 10 GB
per node.

In Figure 5 the FLOP rate for PPM is shown. Each
node is achieving approximately 75 GF/s or about 24% of
peak which is typical for this application and is the highest
sustained FLOP performance of the applications presented
in this study.

In Figure 5 (2nd-4th) the calculated memory bandwidth
for various nodes is shown. Many nodes are well-balanced
in calculated memory bandwidth across time and across
numa nodes; however on some nodes there is a single numa
node where the rate is substantially lower than the rest.
Further study is needed to understand the factors leading
to that imbalance. The fraction of peak memory bandwidth
achieved by this application falls somewhere in the middle
compared with the other applications in the study despite
having the highest percent of peak FLOP rate.

Table V shows the balanced, average memory bandwidth
rates from L3 cache misses for PPM.

NUMA Min (B/s) Max (B/s) Avg (B/s)
0 2.71e6 +/- 0.270e6 2695e6 +/- 424e6 2420e6 +/- 415e6
1 3.05e6 +/- 0.271e6 2700e6 +/- 420e6 2424e6 +/- 416e6
2 2.89e6 +/- 0.259e6 2701e6 +/- 420e6 2425e6 +/- 416e6
3 3.26e6 +/- 0.276e6 2699e6 +/- 421e6 2423e6 +/- 415e6

Table V
PPM SUMMARY STATISTICS OF CALCULATED MEMORY BANDWIDTH
ACROSS ALL NODES FOR EACH NUMA DOMAIN. AVERAGE OF THE

MIN, MAX, AND AVG VALUES ACROSS ALL NODES IN (B/S).

4) MILC: MILC [20] is a large scale suite of applications
for the numerical simulation of lattice quantum chromody-
namics on a wide variety of platforms. MILC based applica-
tions account for significant usage of many NSF funded HPC
center systems. The applications are generally sensitive to
interconnect performance variation due to the 4-dimensional
halo-exchanges and the global reduction operations in the
conjugate gradient phase. It is also sensitive to memory
latency and bandwidth as access patterns often result in
non-uniform striding into data structures. The code supports
single and double precision data types.

For this use case the MILC application su3 rhmd hisq
was run on 108 Blue Waters XE nodes with 16 MPI tasks
per node using less than 1 GB per node. Task affinitization
was used to pin the MPI tasks to each floating point core of
the processor. OpenMP was not enabled but the code base
does support the hybrid MPI+OpenMP programming model.
The code implements uniform domain decomposition of a
4-dimensional lattice with uniform computational work per
node. Imbalances in performance can be due to communi-
cation variation and the irregular memory access patterns.

The small local lattice per MPI task results in an average
of 11 GF/s per node. This is shown in the top plot of
Figure 6. This 3.3% of peak FLOP rate is the lowest
average seen in the applications used in this study. The low
floating point rate is due in part to poor cache utilization



Figure 5. PPM GFlops for job (top). Calculated memory bandwidth in
B/s and % peak memory bandwidth (60 sec intervals) vs. time. Many
nodes are well-balanced in cache misses across time across numa nodes
(2nd); however for some nodes there is one numa node where the rates are
substantially lower (3rd & 4th).

resulting in modest pressure on the memory subsystem.
Figure 6 (middle) shows calculated memory bandwidth in
B/s vs. time for a representative node in the job. Statistics
across nodes of the job are given in Table VI and the
average memory bandwidth for MILC is the highest of the
applications in this study.

Figure 6. MILC GFlops for job (top). Calculated memory bandwidth
in B/s and % peak memory bandwidth (60 sec intervals) vs. time for a
representative node in the job (bottom).

NUMA Min (B/s) Max (B/s) Avg (B/s)
0 4819e6 +/- 15.5e6 6690e6 +/- 20.5e6 6393e6 +/- 21.2e6
1 4845e6 +/- 12.3e6 6724e6 +/- 17.3e6 6427e6 +/- 16.1e6
2 4846e6 +/- 14.2e6 6725e6 +/- 17.9e6 6429e6 +/- 18.0e6
3 4828e6 +/- 16.7e6 4828e6 +/- 16.7e6 6403e6 +/- 22.9e6

Table VI
MILC SUMMARY STATISTICS FOR CALCULATED MEMORY BANDWIDTH

ACROSS ALL NODES FOR EACH NUMA DOMAIN. AVERAGE OF THE
MIN, MAX, AND AVG VALUES ACROSS ALL NODES IN (B/S).

5) VPIC: VPIC [21], [22] is a fully relativistic, charge-
conserving, 3D explicit particle-in-cell code which simulates
plasma physics. VPIC integrates the relativistic Maxwell-
Boltzmann system in a linear background medium for multi-
ple particle species, in time with an explicit-implicit mixture
of velocity Verlet, leapfrog, Boris rotation and exponential
differencing based on a reversible phase-space volume con-
serving second order Trotter factorization. VPIC is a floating
point intensive code with well optimized compute kernels



that are implemented with compiler vector intrinsics where
possible. It uses MPI+OpenMP for a three-dimensional,
nearest-neighbor communication structure.

For the benchmark used in this study, VPIC was run on
144 Blue Waters XE nodes with 32 MPI tasks per node (no
OpenMP) that required approximately 30 GB of memory
per node. Task-processor affinitization was used to pin the
tasks to the integer cores. Note that two integer cores share
a floating point unit in the AMD Interlagos processor.

Figure 7 (top) shows the trace of FLOP rate for VPIC.
The sustained average of 60 GF/s per node is 19% of peak
and is second only to PPM in floating point performance.
In Figure 7 the calculated memory bandwidth vs. time for a
representative node in the job (bottom) is shown. Statistics
across nodes of the job are given in Table VII. In general,
rate is fairly consistent across time and across nodes and the
average rate is second only to the MILC application. VPIC
is able to achieve high floating point rates while sustaining
modest pressure on the memory subsystem.

Figure 7. VPIC GFlops for job (top). Calculated memory bandwidth
in B/s and % peak memory bandwidth (60 sec intervals) vs. time for a
representative node in the job (bottom).

B. Multi-run Analysis

MSR data can be helpful in understanding application
behavior when supporting our partners. In this example, it
was reported that some runs of the same application were
not completing in the time allocated for the workload. It was

NUMA Min (B/s) Max (B/s) Avg (B/s)
0 2.63e6 +/- 0.398e6 3716e6 +/- 26.0e6 3056e6 +/- 15.1e6
1 2.96e6 +/- 0.455e6 3714e6 +/- 25.5e6 3054e6 +/- 14.9e6
2 2.79e6 +/- 0.423e6 3715e6 +/- 25.6e6 3055e6 +/- 15.0e6
3 3.10e6 +/- 0.426e6 3714e6 +/- 25.8e6 3055e6 +/- 15.1e6

Table VII
VPIC SUMMARY STATISTICS FOR CALCULATED MEMORY BANDWIDTH

ACROSS ALL NODES FOR EACH NUMA DOMAIN. AVERAGE OF THE
MIN, MAX, AND AVG VALUES ACROSS ALL NODES IN (B/S).

difficult to determine if and when the jobs were experiencing
unexpected behavior. Through analysis of floating point ex-
ecution rates across nodes, it was determined that successful
jobs exhibited uniform FLOP rates across all nodes within
the job and failed jobs began to show load imbalance across
the processes. By monitoring the standard deviation of FLOP
rates across nodes, variations can be clearly detected and the
divergent values can be clearly highlighted as in Figure 8.
This plot shows the standard deviation across the 20 nodes
of the job using the one minute FLOP average throughout
the job runtime. Each line represents a separate job instance
with the same application, input and node count. Excluding
the first and last minutes of startup and shutdown, each of
the four successful runs show a consistent and low standard
deviation of FLOP rates across nodes of approximately 0.1.
In each of the 3 failed runs, the failure can be observed
visually via the graph or numerically by measuring this
single value. The behavior can be monitored in realtime
graphically or scripted and monitored to identify errant runs.

Figure 8. Multi-run Analysis Flop Variation: Standard deviation of FLOP
rates across nodes at one minute intervals. Failing runs had inconsistent
FLOP rates across nodes across the job run time.

VIII. CONCLUSIONS

In this work we have presented our implementation for
collection of MSR counters as a system service. This enables
us to obtain system-wide insight into overall, and job based,



utilization of resources, including compute processing and
memory bandwidth. Unlike other system monitoring data
sources, the MSR counters are subject to external reassign-
ment due to other user tools which may be setting the
counters for other purposes. This results in unique design
requirements, which we have handled, for the discovery of
counter change, recovery of counter settings for the next
user, and reporting of values upon change in a manner that
is easily discoverable during subsequent data analysis. In
addition, we provide a user-invokable interface for interact-
ing with the service that can enable users to take advantage
of the service without requiring any changes to their code.
Current state is made available during run time to analysis
tools.

We have presented use cases of analyses from the system
data collection for applications representative of the Blue
Waters initial workload. In these use cases we have shown
that useful information can be obtained from continuous
system-level monitoring data. Higher fidelity profiling with
typical profiling tools can be performed for further investi-
gation.

Our on-going work centers on support for low-latency
analysis of the run-time data. This includes increased support
for in transit processing, easing the interpretation of the
dynamic data, and enabling user visualization of significant
data that can give insight into their applications resource
utilization. We are also investigating inclusion of counters
necessary for assessing processor and memory affinity.
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