Analysis of Gemini Interconnect Recovery
Mechanisms: Methods and Observations

Saurabh Jha, Valerio Formicola, Catello Di Martino,
Zbigniew Kalbarczyk, William T. Kramer, Ravishankar K. Iyer
{sjha8, valeform, dimart, kalbarcz, wtkramer, rkiyer }@illinois.edu
University of Illinois, Urbana-Champaign

Abstract—This paper presents methodology and tools to
understand and characterize the recovery mechanisms of
the Gemini interconnect system from raw system logs. The
tools can assess the impact of these recovery mechanisms
on the system and user workloads. The methodology is
based on the topology-aware state-machine based clus-
tering algorithm to coalesce the Gemini-related events
(i.e., errors, failure and recovery events) into groups. The
presented methodology has been used to analyze more
than two years of logs from Blue Waters, the 13.1-petaflop
Cray hybrid supercomputer at the University of Illinois -
National Center for Supercomputing Applications (NCSA).

Keywords—Networks , Reliability, Fault Tolerance, Fault
diagnosis

I. INTRODUCTION

This work is motivated by the failures of the re-
covery procedures in the Gemini interconnect system
during the first two years of operational hours of Blue
Waters, the 13.1-petaflop Cray hybrid supercomputer
at the University of Illinois, managed by the National
Center for Supercomputing Applications (NCSA). The
objective is to bridge the gap between theoretical and
practical understanding of the failures of the recovery
procedures. We have developed models to assist in the
analysis of real-case scenarios of recovery procedures,
and to assess their impact on the applications and on
the system. Such a gap in understanding can be traced
back to the underlying assumptions about the failures
in the systems. Recovery procedures are built with the
assumption of handling only one failure at a time; this
works well for small-scale systems, where the chances
of concurrent failures is negligible compared to large-
scale cases. Indeed, for a large-scale system, the number
of observed failures is much higher. This fact increases
the chances of (1) multiple recovery procedures run-
ning concurrently in the system due to simultaneous

failures, (2) failures during recovery procedures, which
can lead to unsuccessful recovery and system outage.
Even in cases when the recovery operation is successful,
applications can fail due to corrupt application states.
Currently, recovery-management software cannot ensure
survivability/correctness of the applications during the
recovery procedures; hence, applications can fail at any
stage during the execution of recovery operations.

In this work we present a methodology and tools
to facilitate an in-depth analysis and characterization of
Gemini interconnect recovery procedures. Our study is
based on mining failure data logs, application logs, and
human-written failure reports collected from Blue Waters
over three years, from January 2013 to March 2015. In
particular, our contributions include:

e Development of techniques to extract, track, and
cluster recovery procedure events from system logs, and
correlate these clusters with application logs and manual
failure reports. The implemented data-analysis pipeline
extends the LogDiver tool previously presented in [1],
[2], and includes: a filter that is able to extract and decode
events generated during Gemini recovery procedures; a
novel state-aware coalescing algorithm. This algorithm
coalesces events based on (1) the system hierarchy, a
tree-like structure which captures topological dependen-
cies among system components (e.g., cabinet — blade
— node/ASIC— link) and helps track propagation of
events across the levels of the system hierarchy, (2) a
state machine, which captures sequences of activities
(or actions) corresponding to recovery procedures. The
coalescing algorithm is able to reconstruct recovery se-
quences from filtered events. In addition, the analysis
pipeline determines the termination status of recovery
procedures (successful/fail), matches recovery sequences
with system-wide outage (SWO) events from failure
reports, and evaluates the impact of recovery procedures

and related-SWOs on the applications executed on the
compute nodes involved in the recovery operations.

e Demonstration of the proposed methodology in
characterizing the recovery procedures of the Gemini
interconnect system. Specifically, we provide initial re-
sults on (1) distribution of failures/successes of recovery
procedures caused by lane, link, and warm swap failures;
(2) trends in the rates of recovery procedure failures;
and (3) impact of interconnect recovery procedures on
applications.

Finally, our methodology and tools can be used to cre-
ate models and analyze logs different from Gemini, with
a reasonable adaptation effort. This makes the proposed
approach valuable for any researchers and practitioners
that aim at generating system-level models to analyze
field data.

II. RELATED WORK

Cray XT and Cray XE6-based systems, such as Blue
Waters, use the 3-D torus interconnect technology, as
descried in [3], [4]. The recent advancements/changes
and a description of the Gemini interconnect technology
is provided in [5]. The 3-D torus interconnect design has
been chosen by Cray based on performance simulations
([6], [3]) and resiliency requirements at that time. The
newer generation of Cray systems, such as the XC40, is
installed with the Aries (Dragonfly) network [7]. The
exact routing techniques are not publicly avaiable for
Cray XE systems; a high-level overview of the routing
algorithms and techniques can be found in [4], [5], [8].
Principles and Practices of Interconnection Networks [9]
contains a detailed study and overview on the various
different models and techniques for the interconnect
systems.

Most of the work in interconnect system focuses on
the design and scalability of the networks such as in [10],
[11], [12], [6]. In [13], Ezell presents micro-benchmarks
to diagnose problems in HPC systems with the Gemini
interconnect, using performance registers. That analysis
is performed in unloaded network scenarios. In contrast,
we have developed tools to investigate the impact of
failover mechanisms on the applications from the real
logs of production hours.

III. OVERVIEW OF GEMINI INTERCONNECT

In this section, we describe the main characteristics of
the Gemini interconnect system of Blue Waters and the
related recovery features. In order to keep in the section

comprehensive description of the interconnect system,
we have combined some of the exploratory results gained
from the analysis of field data, with the information
contained in Cray official documentation on the Gemini
interconnect resiliency [14] mechanisms. An overview of
the Gemini interconnect is provided in [5].

\\\ /
\ w
R a
~| | GEMINI g%
) | Super | !
visor |
N

4

Gemini HSN (High Speed Network)

Fig. 1. Blue Waters 3-D Torus Gemini interconnect layout. XE and
XK are CPU and GPU nodes respectively where as LNET is Lustre
NETwork routers running on top of the Gemini interconnect

A. Architecture Overview

The Blue Waters’ high-speed network consists of an
anisotropic 3-D torus using Cray Gemini router (see
Figure 1) to connect all the nodes in the system. Each
blade includes two Gemini application specific integrated
circuits (ASICs), each housing two network interface
controllers (NICs) and a 48-port router. A NIC is attached
to one node using a HyperTransport’™3 host inter-
face. Each ASIC is connected to the network by means
of 10 torus connections, two each in X+, X-, Z+, Z- and
one each in Y+ and Y-. An ASIC also connects internally
two nodes using NICs. Each connection is composed
of four links and each link is composed of 3 single-
bit bidirectional lanes. Thus, each connection consists of
12 lanes, and an ASIC connects to the other ASICs on
the network via 24 lanes in the X/Z and 12 in the Y
dimension. A channel is a logical connection between
two link end-points. Further, each channel comprises
two virtual channels to prevent request-response depen-
dency cycle. A multidimensional torus interconnect is
susceptible to deadlocks due to possible: (1) dimensional
turn dependency cycles, (2) torus dependency cycles,
and (3) request/response dependency cycles. To avoid
these dependencies, the Gemini interconnect system uses
packet adaptive virtual cut-through directional ordering
routing algorithm. In Gemini, each channel supports two
virtual channels (VCO and VC1). However, in order

to avoid both request-response and torus dependency
cycle, each channel would need four virtual channels.
To address this, Gemini router chips are divided into
two groups (CGO and CG1). These two groups along
with two available virtual channels make up for the
need for four virtual channels required to avoid request-
response dependency cycle (via VCO and VC1) and torus
dependency cycles (via CG0O and CG1).

B. Fault Tolerance and Resiliency

Gemini provides several levels of protection from
errors and failures. Packets are protected through 16
bit cyclic redundancy check (CRC) and are checked at
each Gemini ASIC (and between the transition from
NIC to router as well). Gemini ensures reliable delivery
of packets using sliding window protocol. Most of the
memory regions are protected via single error correction
double error detection (SEC-DED); however, the buffer
storing the router tables are not protected by an error-
correcting code.

In terms of path availability for successful delivery
of packets, there are two redundant connections between
any two Gemini ASICs in the X and Z directions
whereas only one connection connecting Gemini ASICs
in the Y direction. Each of these connections has two
redundant links, and each link has three redundant lanes.
Gemini interconnect is capable of running in degraded
mode as long as there is at least one active link with
a minimum of one lane functioning properly. In the
general literature, software and hardware designers have
used links and channels interchangeably for different
purposes with significant differences in meaning. For the
purpose of consistency and readability with respect to
Cray system logs, we refer to a channel as a logical
connection between link end points, and, therefore, use
channel and link interchangeably. Thus, in this work, a
link down does not necessarily mean that there is no
active communication path between two ASICs.

C. Fault Detection and Recovery

Fault detection and recovery of the network is man-
aged through the supervisor block that connects Gemini
to an embedded control processor (LO) on the blade.
The LO is connected to system management workstation
(SMW) through the Cray Hardware Supervisory System
(HSS) network. This is shown in a block diagram in
Figure 1. The LO blade controller detects failed links
and power loss to Gemini mezzanine cards (mezzanine

is a board on which two ASICs are situated) using
the “gmnwd” daemon. System responses to failures are
logged (via the “xthwerrlogd” daemon) and orchestrated
(via the “xtnlrd” daemon) by the SMW. In this work,
we study three specific recovery mechanisms: (1) lane
recovery (2) link failover, and (3) warm swap.

1) Lane Recovery: The availability of 3 lanes in each
link allows the network to tolerate up to two lane failures
and operate in a degraded mode. When all the three lanes
fail in a link, the link is marked as inactive and a link
failover is triggered. Each time a lane goes down, an error
is written in the logs and a lane recovery is triggered
by the LO. The controller attempts to recover the lane
a certain number of times (as configured by the system
administrator) before marking the lane as a permanent
failed. No lane recovery is triggered for an inactive link.

A state-transition diagram for the lane recovery is
depicted in Figure 2. The two outgoing transitions form
the “All Lanes Healthy” state report a lane failure (one
or two lanes unavailable) or the whole link failure (three
lanes unavailable). Lane mask represents a three-digit
bitmap (0 indicates a lane down; 1 indicates a lane
healthy). A lane mask 7 means that the lane recovery
is successful. Any other values indicate the position of
active lanes in a bit mask (e.g., a lane mask of 5 means
lanes 1 and 3 are active, whereas lane 2 is inactive).

Lane
Recovered

Mode
Exchanges

10r2
Lane(s)
Down

Lane
Recovery
State

Lane

Problems,
All Lanes At Least 1
Healthy Active Lane

Lane Problems,
No Active Lane
Three Lanes

Lane
Problems, Degraded
No Active Mode
Lane

Recovery
Fails/Re-init Failed

Down, Link
Failed/Inactive

Fig. 2. State transition diagram for lane recovery procedure. 3 lane
failures (in the same link) result in an inactive link.

2) Link Failover: Figure 3 shows the state-transition
diagram for the link failover and warm swap operation of
the Gemini interconnect. The failover procedure consists
of (1) waiting 10 seconds to aggregate failures, (2)
determining which blade(s) is/are alive, (3) quiescing the
Gemini network traffic, (4) asserting a new route in the
Gemini chips (performed by the SMW), and (5) cleaning
up and resuming Gemini. The total time to execute the
procedure varies from 30 to 600 seconds. Links can

Determine

Active Blade
Asics Addiional Active Blades
Disconnected arures Determined
" Determined
Aggregate failures 4

. sﬂo*"“
*

Cabinet/Blad
e/Mezzanine

ct
Failure
W set Al
compY

r T seconds
No Discconect

Bet/n ASICs PS“‘E

Mask failed omez
Cable Failure link{(s) i
Failover
Other
Failures

Routing Table

Corruption
Initial, Watch
Errors Failures

State transition diagram of Gemini link failover operations.

% I |

Routes
Computed

Cross Check
and Install

. Unquiesce
Failover Network

Finished,

Link Failover
Success

Fig. 3.

become unavailable due to one of the following reasons:

e All three lanes failed in the link
e Power loss in a mezzanine, blade, or cabinet
e Faulty cable

e Other reasons such as routing table corruption,
software deadlocks, etc.

A faulty cable causes 32 link endpoints to become un-
available. Power loss on a mezzanine, blade, and cabinet
causes 32, 32, and 960 end points to fail, respectively.
Link failover is triggered whenever a link becomes
unavailable. The link failover operation masks failed
links whenever possible without causing interruption
of the network. However, when there is a complete
disruption between the communication of two ASICs or
a node/blade/cabinet becomes unavailable, the failover
mechanism has to quiesce the whole network to install
the routes safely. A successful failover restores the com-
munication path in the network and the functioning of
the system, whereas a failed failover causes the whole
network to completely fail, and leads to system-wide
outage. In Figure 7, a state-transition diagram shows the
various steps and conditions leading to a successful or
failed link failover.

3) Warm swap: Warm swap is the addition or removal
(disabling) of compute blade/cabinet in a running system.
This operation cannot be performed on service blade/cab-
inets. A warm swap is invoked by human administrators
by logging into the SMW and calling warm swap proce-
dures; hence this procedure is highly controlled. Warm
swap procedure is similar to link failover mechanism
with certain exceptions. Details are shown in the state-
transition diagram for warm swap in Figure 4.

Active Blades
Determined

Determine

on PO Routes
on
coﬂ‘"“m‘ o6 Computed
aoute grmd
oL
Warmswap
Failed Quisc, B
ence Faileq Quiesce
Network
Cross Check
And Install

% Unquiesce
Network

Initiate
Warmswap

Warm Swap
Success

Fig. 4. State transition diagram of Gemini warm swap operation
(which is always invoked by a system administrator).

IV. METHODOLOGY AND TOOLS

In order to understand and analyze the recovery
procedures of the Gemini interconnect, we augmented
LogDiver [1] with additional capabilities to implement
a recovery analysis workflow. The augmented LogDiver
filters, coalesces, and correlates Gemini-related errors
with application failures and human-written system fail-
ure reports managed by system administrators. This
approach helps to determine the recovery type -lane re-
covery, link failover, warm swap category- and recovery
exit status as successful or failed. Coalescence is the
crucial step in our work flow and is responsible for:

e recomposing the events from the logs to create
recovery-sequence clusters. The clusters contain
information about the events that triggered the
recovery, steps taken to mitigate failures and
anomalies in this sequence. Coalescing is de-
scribed in detail later in this section. Note that
the triggering events do not necessary correspond
to the root cause of the failure; rather they are the
closest events (in time), since logged immediately
prior to the recovery procedure invocation.

e giving a consolidated list of all the components
involved in the recovery.

e giving the timing details of the recovery se-
quence.

In addition to the characterization of the recovery
procedures, the recovery-procedure analysis workflow is
used to evaluate the impact of recovery (successful/-
failed) on user applications and on the system availabil-

ity.
Our tool takes three inputs (see Table I): (1) syslogs,

(2) consolidated application workload (obtained from
ALPS and Torque logs), and (3) manual failure reports

(created by administrators). The consolidated application
workload logs are filtered in order to contain only user
applications (i.e., all debug and benchmark jobs run by
system administrators are removed from this analysis).

TABLE L SUMMARY OF DATA SOURCES
Data time span: January 2013-March 2015
Datasource Count Dataset Size
Raw syslogs* 75,760,682,632 13 TB
Manual failure reports | 4,184 1.4 MB

Coalesced Workload 20,600,030 8 GB

Figure 5 shows the block diagram of the recovery-
procedure analysis workflow of our tool. It consists of
five operations, indicated by diamond shapes (in Figure.
5): Filter, Coalesce, Merge, Workload Consolidation, and
Gather. Filter and Coalesce are implemented using the
C++ language. The Filter takes approximately 15-25
minutes to process 13 TB of syslogs on 815 Blue Waters
nodes depending on the I/O and network utilization
of Blue Waters. Coalesce is currently serial in nature
and takes approximately 8 hours to run on a single
node. We expect that a parallel version of Coalesce runs
much faster; we consider the parallel implementation
for future work. Merge and Gather are implemented (in
serial) using the Python programming language, and take
approximately 1 minute and 20 minutes to execute on a
single node, respectively. Workload Consolidation was
previously implemented in LogDiver and we refer the
readers to [1] for more details on this analysis.

In the following, we describe all the operations of
the recovery-procedure analysis workflow in details, that
have been added to LogDiver (from this point forward,
the additional tools for the workflow + LogDiver will
be called augmented LogDiver).

Fig. 5. Block diagram of the pipeline for analyzing Gemini recovery
procedures on system and user applications.

A. Filter

Filter operation applies regular expression (regex)
rules onto the raw system logs line by line, to transform
and tag (i.e., label) these logs into a set of features,
represented by nple < Time, Location,Tag,Info >.
The Time field is the timestamp of the logged event;
Location is the component that either suffered from
errors/failures, or where the recovery procedure was
running; T'ag is an identifier of the matched regex rule;
Info is used for storing other important information,
such as completion time or error exit reason. Location of
the log message is determined either through the location
field in the logging protocol [15] or from the Tag and the
body of the message itself. It is important to extract the
exact location to evaluate the impact. As an example,
below we show a message taken from syslog, which is
written by the xt/nlrd daemon on the SMW, upon a failure
of a Gemini ASIC module.

1368343836 local3 5
2013-05-12T02:30:36.909109-05:00

smw xtnlrd 15324 p0-20130503t234552
[hss_nlrd@34] 2013-05-12 02:30:36 smw
15325 cb_hw_error: failed_component
cl7-10cls6gl, type 21, error_code
0x0d10, error_category 0x0002

In this example, filter operation determined the
< Time > as the unix time - “1368343836”, <
Location > as “c17-10c1s6g1”, which is the failed com-
ponent, < T'AG > as “ASIC_FAILED”, and < Info >
as “ error_code=0x0d10”. In this case, the identification
label of the failed component is ’c17-10c1s6gl™, and
contains the < Location > of the Gemini ASIC failure
event, which is not directly indicated in the syslog header.
However, this is more of an exception as in many
cases the reporting component can directly be used as
< Location >.

TABLE II. AN EXAMPLE LINE FROM RULES DATABASE
Tag | Regex Expression Tag
ID

2020| Link recovery operation | LINK_RECOVERY_SUCCESS

was successful

All the events that indicate Gemini interconnect-
related errors, failures, and recovery procedure stages
are stored as rules in our database. These events were
selected based on our understanding of Gemini recovery
procedures, as discussed in section III, and each event is
matched to only one rule (in which case it is dropped).

There are over 122 tags in our regex rules database. An
example line from our rules database is shown in Table II.
These tags are divided into 4 categories: Trigger-Latent,
Trigger-Immediate, Recovery Transition, and Recovery
Finish. Table III gives representative examples of tags
for each of the four broader categories.

These four tag categories are created based on the
general understanding of the failure manifestation and
propagation in the system. The problem starts with faults,
which manifest as error in the system. Errors lead to
failure(s) either immediately or some time later. A failure
invokes a recovery mechanism, which can either success
or fail. The details of these categories are as follows —

e Trigger-Latent —These tags represent errors which
can lead to failure, or are indicative of failures that have
not been detected yet. Since these tags do not cause
immediate failure of the link/lane, they do not trigger
any recovery procedures. However, some of these events
result in disabling of lanes/links, which in turn generates
new events (belonging to Trigger-Immediate category).
For example, when a single lane has more errors than
its companion lanes, it is deactivated leading to ‘Lane
Down ’event in the system.

o Trigger-Immediate—These tags indicate an activity
in the system that modifies or affects the network topol-
ogy, i.e., link addition, link disable, link unavailability,
thus causing the invocation of recovery procedures to
handle these changes. For example, “ASIC_FAILED”
indicates a failure of Gemini ASIC on a blade, causing
the links to be unavailable and making the network
unroutable. In almost all cases, when events from this
category are observed, recovery procedures are expected
to handle these events.

e Recovery start and Transition Step —These tags
indicate the starting point and the intermediate steps of
the recovery procedures, and, hence help to keep track
of the system actions taken for failure mitigation. Also,
this data helps to understand if any other failures in
the system interfere with the recovery procedure. For
example, “LINK_AGG_FAILURES” tag indicates that
the recovery procedure is waiting and collecting any
additional failures for T seconds before calculating new
routes for the network.

e Recovery Final —These tags include all the states
that indicate the final state (success/fail/missing)
of the recovery procedure. For example,
“LINK_FAILOVER_SUCCESS” indicates that the
link failover operation finished successfully.

TABLE III. TAG CATEGORIES WITH REPRESENTATIVE TAG
EXAMPLES AND RELATED COUNTS, AS OBSERVED IN THE LOGS

TRIGGER-LATENT RECOVERY TRANSITION
BLADE_ELECTRICAL_ISSUE 224E+07] BLADE_RECOVERY 2.79E+02
CABINET_HEARTBEAT_FAILED | 5.37E+05] BLADE_RECOVERY_SUCCESS | 2.79E+02
GEMINI_BUFFER_OVERFLOW | 4.90E+07| CABINET_READDED 7.11E+06
GEMINI_CHECKSUM_ERROR 8.64E+03| FINISHED_LINK_RECOVERY 3.726+02
GEMINI_ECC_ERROR 1.16E+06] GEMINI_TIMEOUT 4.50E+01
GEMINI_MISROUTED_PACKET | 5.06E+08] HSN_NETWORK_QUISCED 4.67E+02
GEMINI_PROTOCOL_ERROR 8.19E+08] HSN_NETWORK_UNIQUISCE 9.33E+02
HWERR_B2B 2.686+09] HSN_WAIT_NETWORK_DRAIN | 4.67E+02
HWERR_CMD_MISMATCH 1.00E+03] HW_ERR_LINKF_IDENTIFIER 3.04E+02
HWERR_MISROUTE_PACKET 4.05E+05] INIT_NEW_BLADES 2.78E+02
HWERR_NIF_SQUASHED_REQ | 7.17E+07] INIT_NEW_LINKS 1.04E+02
SSID_RESP_PROT_ERROR 258E+07| LINK_FAILED_HANDLED 4.50E+05
LINK_INACTIVE 439E+05| LINK_AGG_FAILURES 4.24E+02
ONE_LANE_DOWN 3.50E+07] NETWORK_QUISCE 9.19E+02
RX_VC_DESC_INV 7.22E+05| NETWORK_UNQUISCE 9 15E+02
SSID_UNEXPECTEDRSPSSID 2.14E+05| REROUTE_SUCCESS 1.638E+03
TWO_LANE_DOWN 5.69E+05] ROUTE_COMPUTE 1.05E+03

ROUTING_RETRY T.09E+02
TRIGGER-IMMEDIATE STARTED_LINK_RECOVERY 251E+05
ASIC_FAILED 1.85E+04] WARM_SWAP_FINISH_TIME 7.02E+02
BLADE_DOWN_DETECTED 3.73E+02] WARM_SWAP_STARTED 7.04E+02
EPO_FAULT T.60E+03 RECOVERY FINISH
FAN_FAULT 1.27E6+03| LINK_RECOVERY_FAILED 9.60E+01
LINK_FAILED 2.51E+05] LANE_RECOVERY_FAILED 2.85E+03
MEZZANINE_POWER_FAILED | 5.18E+04] LINK_RECOVERY_FAILED 9.60E+01
NODE_DOWN 1.95E+06] LINK_RECOVERY_SUCCESS 3.22E+02
ROUTING_TABLE_CORRUPTION| 1.17E+02] WARM_SWAP_DELAYED 4.00E+00
THREE_LANE_DOWN 5.76E+05] WARM_SWAP_FAILED 5.10E+01
NODE_UP 3.93E+05] WARM_SWAP_SUCCESS 6.51E+02

In a complex system like Blue Waters, it is hard to
build (and then track) deterministic model of the state
transitions (described in section III) during recovery due
to the following reasons —

e Failure during recovery procedure: A failure during
a recovery procedure can alter the state, and, hence the
state transition of the recovery path, depending on the
type of failure. This failure acts as interference, and
thus, alters the normal recovery path. It is impossible
to know all the transition paths in advance due to -
(1) unavailability of the underlying code, and (2) non-
determinism in the system.

o Issue of bias versus variance in modelling: Explic-
itly coding all the recovery paths into the model increases
the model complexity, and hence, can lead to a high bias
in the model. This hinders the discovery of true causes
of the failures.

e Logging issues: The timestamps stored in the logs
represent the logging time of an event. Sometimes, there
can be incoherency in the logging as the different events
are logged by different subsystems, and writes (to the
log file) may not follow a strict order. An event can be
completely missed when the system is heavily stressed,
e.g., the logging service itself is down, the memory is
corrupted, or the network is unavailable.

To cope with these problems and represent all recov-
ery procedures using a general model (i.e. a common
state-transition diagram) of failure manifestation and

propagation in the system, the state-transition diagrams
described in section IIl are mapped injectively onto a
reduced state-transition diagram depicted in Figure 7.
This abstraction does not only helps us cope with the
problems discussed above, but also reduces the time to
do our analysis as there are many fewer states to track.

B. Coalesce

The coalescing algorithm is executed on the output
of Filter. The algorithm shown in Algorithm 1 creates
clusters of events (corresponding to messages logged)
to form Gemini recovery-sequences. The algorithm co-
alesces tags based on the fixed sliding window algo-
rithm proposed in [16], [17]. The algorithm starts by
initializing an empty tree. The tree is essentially based
on a fault tree model (see Figure 6), which captures
the topology of the system and, hence, potential error
propagation paths in the Gemini interconnect. The idea
of using this model lies in the fact that an event at higher
level in the topology affects all the sub-levels, and hence,
all events that occurred in the lower levels during same
time window (as the high-level event) need to be merged.
Similarly, an event at lower level can affect components
located at higher levels in this tree. Thus, the fault tree
model effectively captures Gemini recovery events, as
well as it provides an effective way to index the clusters
(generated by the coalescing algorithm) and components
of the system. Such indexing speeds up the processing
time, by at least an order of magnitude.

Fig. 6. Gemini topology-aware fault model. The model helps track
the effects of events in sub-components.

The algorithm first tries to find the index where
log_line (refer to Algorithm 1) can be inserted in the
cluster tree. If no index is found, a new leaf is created
at the appropriate level by traversing the tree. If the
log_line is inserted at a level that has a sub-tree, all

the clusters in the sub-tree are merged with the cluster
of the current level, as required by our fault tree model
described earlier. For example, if the log_line belongs
to the blade-4 level, all the clusters (if any) below this
level are merged with this cluster. When the cluster
is complete, the final state of the sequence is decided
using the state-transition diagram shown in Figure 7.
The algorithmic complexity of the outlined model is O(n
log(m)), where n is the number of lines and m is the
system size determined by the total number of unique
components (e.g., links, ASICs, blades, cabinets, etc).

Trigger Trigger Failaver/ Transition
Latent Immediate Recovery Step
Start

Failover/Recovery Finish

TR RN EEEEEEEEEEEEEEREREEEEEEEEEEEEEENEESEESEESEESEEEEEEEEEEEEEEEEt

Fig. 7. Reduced recovery-sequence state-transition diagram. All
state-transition diagrams described in Section III are mapped to this
reduced state-transition diagram.

Algorithm 1 Coalescence of Gemini recovery proce-

dures related events.
1: Tree = initialize_cluster_tree()
2: for log_line in filtered logs do

3: current_cluster = find_cluster_index(T'ree, log_line.location)
4: if ((current_cluster.timestamp — log_line.timestamp) <
slide_time) && (current_cluster # NULL) then
5: current_cluster.timestamp = log_line.timestamp
6: current_cluster.add(log_line)
7: merge_all_clustrs_in_subtree(current_cluster)
8: else
9: if (current_cluster # NULL) then
10: current_cluster.states
= determine_cluster_states(current_cluster)
11: write(current_cluster)
12: end if
13: start_new_cluster(Tree, log_line.location)
> Start new cluster with log_line being it’s first member at the
appropriate location in tree
14: end if
15: end for

16: write_active_clusters(Tree) > Write all active clusters

Table IV provides an example output of coalescing.
This example shows a successful link failover operation,
as indicated by Recovery Status. The problem starts with
the corruption of routing tables in one of the ASICs as
indicated First Tag. This results in failure of links, and
hence, triggering of the failover. The End Tag indicates
the unquiesce of the node. Although the failover ran for
120.09 seconds (indicated by Additional Info), the time,

TABLE 1V. EXAMPLE OF RECOVERY SEQUENCE
CLUSTER(OUTPUT OF COALESCING ALGORITHM)

Start Time | 1431583171

[Unix Time]

End Time | 1431583401

[Unix Time]

Locations blade_c11-8clsl, blade_c14-10c0s3, smwl, blade_c9-
8cls3, blade_c14-3c0s1, blade_c13-6¢2s0, blade_c19-
0c2s3, blade_c1-9¢2s5, blade_c12-7c0s4, blade_c16-
1c2s7, asic_c11-8cls1g0, blade_c21-0cOs4

First Tag CORRUPT_ROUTING_TABLES

End Tag LINK_RECOVERY_SUCCESS

Tag Counts ROUTING_TABLE_CORRUPTION[1],

ASIC_FAILED[1], CABINET_READDED[6912],
ROUTE_COMPUTE][1], NETWORK_QUIESCE[1],
NETWORK_UNQUIESCE][1], FIN-
ISHED_LINK_RECOVERY[1],
LINK_FAILOVER_SUCCESS[1],

Total Events 6919

Duration [Sec- | 230
onds]

Recovery Sta- | SUCCESS

tus

Additional Info | RECOVERY_HANDLING_TIME= 120.09

from the beginning of the first event to the last event, in
the cluster was 230 seconds. When the < Location >
tag contains smwl in the output, it means that the
whole system is affected. In particular, the time between
quiescence to unquiescence stops the traffic in whole
system.

C. Merge

The Merge operation processes SWO failure reports
filed by the technical staff of Blue Waters/Cray, and
correlates them with recovery-sequence clusters obtained
from coalescing. This operation looks at the overlapping
time between recovery-sequence clusters and SWO dura-
tion mentioned in the reports. This merging does not nec-
essarily indicates causation. For causality inference, we
manually verified the merged output. This was a feasible
task due to the small number of SWOs (approximately
~ 101 in this study) that needed to be analyzed manually.

D. Gather

The Gather operation is related to the evaluation of
applications affected by successful and failed recovery
procedures. It finds applications -from the database of
consolidated workload- that overlap in time and location
with any of the recovery-sequence clusters. The final
output of this operation is a statistical characteriza-
tion of affected applications. It provides the number
of applications running during the time window of the
recovery-sequence clusters and applications terminated
during this time window; further it extracts the the

number of applications terminated with success, and the
number of applications terminated with failing status,
both system-wide and on the nodes involved in the
recovery operations. Finally, the tool provides the scale
of the applications executed on the nodes.

V. RESULTS

This section shows our preliminary results from the
analysis of the outputs obtained from the methodology
and tools, as described in section IV. We discuss com-
pletion status and failure rates of recovery procedures,
and their impact on the system and applications.

A. Completion Status of Recovery Procedures

Figure 9 shows the breakdown in percentage of
successful lane recovery, link failover, and warm swap
procedures. The Gemini interconnect is highly resilient
to lane failures. Specifically, 99.1% of lane failures are
successfully recovered. Moreover, the impact of lane re-
covery failures is very limited since a disabled lane does
not cause link failure, as explained in section III (except
for three lanes down). Since lane recovery operations
are managed by the LO, they may potentially interfere
with other recovery procedures managed by the SMW
through the LO, such as link failovers and warm swaps.
For example, after analyzing recovery-sequence cluster
summaries generated by our tool, we found out that
in one case, the failure of the lane recovery negatively
affected a link failover procedure running in the system.
This resulted in a high-speed network deadlock and
SWO. There are other cases where such synchronization
issues lead to failure of Gemini recovery procedures.

Link failovers are successful only in 75.8% of the
cases. Although warm-swap operations are highly con-
trolled (since they are triggered by system administra-
tors), around 7.9% of warm swaps fail. Apart from
maintenance reasons, warm swaps are initiated when
the network becomes unroutable. By analyzing recovery-
procedure clusters, we observe that most failures in
the link failovers and warm swaps are caused by other
simultaneous failures in the system. These simultaneous
failures could not be managed by the SMW and, in the
end, resulted in a SWO.

B. Recovery Procedure Failure Rate

Figure 8 shows the total count of failures of recovery
procedures per month in Blue Waters for (a) lane, (b)
link, and (c) warm swap. Failures of recovery procedures

Counts Per Month
[- N N w
o (% o w [=]
o o o o o

[
o

o

N’ ;N N M & & & < N0 N N N ™M 0 o0 m
o e T e B e S e S e B e N e S e SO e N e B e | o S e B e B e B §
© © © © © © ©o ©o o o o o o © © o o
S d 388385988 5888 8

|~

7/2015 '\

g & & < 1 N N M MM Mmoo M g g g T 0 0
L = T D . B . B . B ., | L = T . D . D D . B . B . R . I . |
o © O ©o o o o © © O © © O OO ©o o o o
8§ § § § 8388 §g8&8 888888 a8g

—_—
(=3

~

—_
(s)

)

Fig. 8. Count of total failure of recovery procedures for (a) lane (b) link (c) warm swap per month. The vertical line shows a major software
upgrade fixing bugs in the Gemini interconnect resiliency management code.

100% 99.1% 75 8% 92.'1%
80% I)
60% :
40%
20%
0%
Lane Link Warm Swap

Fig. 9. Recovery completion status for lane, link, and warm swap.

have decreased over time. There is a sharp decrease
in failures of recovery procedures after November 1,
2013. On that day, Blue Waters SMW software was
updated and further patched (a day later) to fix major
software bugs related to handling failures in the Gemini
interconnect. Beyond this point, the recovery procedures
failure had been continuously decreasing over time, thus
showing the increase in stability of the system.

C. System-Wide Outages

Of 101 SWOs observed in human-written reports
filed by NCSA Blue Waters staff, the Merge operation
(see Figure 5) identified 28 SWOs related to Gemini
interconnect recovery procedures. Of these 28 cases,
14 of these are strictly due to failure of the recovery
procedures in the Gemini interconnect.

D. Application Impact

Using the methodology in section IV, we have ana-
lyzed the impact of interconnect-related recovery proce-
dures on running applications. The impact was assessed
in terms of percentage of applications that failed during

the recovery-sequence clusters. We calculated this metric
for the 28 SWOs and found that 20.13% of the applica-
tions failed during these SWOs. Additionally, we found
that 0.20% of the applications failed during successful
recoveries. This shows that successful recovery can also
lead to failure of applications due to the delay in handling
the failures. A successful recovery can last between 60
to 1000 of seconds.

Routing Table Begin Link Quiesce Rerouting
Corruption Failover Network Success

o8 oS~ &S o

ASIC
Failed

Unquiesce Link Failover
Network Success

Rerouting
Required

T=1431583171 T+127 T+230

T+82

Fig. 10. An example of a successful link failover sequence (taken
from the output of the coalescing algorithm). Orange circle represents
faults, red circle represents failures, and green circles represents
recovery operations.

In Figure 10, we show an example of a link failover
sequence that ended successfully. A fault (Routing Table
Corruption) occurred at time 7. A short time later, the
failure (ASIC Failed) occurred, and the failover operation
(Begin Link Failover) was triggered. The failover proce-
dure determined the need for calculating new routes to
handle this failure (Rerouting required), and calculated
new routes to be installed on the routers. Finally, at time
T+ 82 seconds, the network was quiesced, and the routes
were installed. Once the new routes were installed and
asserted, the network operation was fully restored. In this
scenario, in the time interval from 7" to 1"+ 82 seconds,
the network was still active (quiesce had not yet begun),
and hence, there was a chance (in this 82 seconds) for the

failure to propagate across the system, and amplify the
impact of the initial fault (the Routing Table Corruption)
on the system and applications. At 71" + 82 seconds,
network was quiesced to install the calculated routes.
However, quiescence does not guarantee protection from
application failures and hence, the application can fail
due to - (1) lag in propagation of quiescence in the
network, and (2) packet loss. From T + 127 seconds to
T + 132 seconds, applications that do not employ work-
load redistribution or check-pointing could potentially
fail due to unavailability of the nodes, blades, or cabinets.
As shown through this example, the failure containment
by recovery procedures does not always hold in practice.
Hence, applications can fail even during a successful
recovery for different reasons, as discussed above.

E. Validation on Mutrino Dataset

The methodology and tools presented in this paper
works out of the box for Cray Aries interconnect. We
ran the augmented LogDiver on ‘Mutrino dataset ’[18]
for testing and validating our models. Mutrino is a Cray
XC40 based testbed system consisting of 100 nodes con-
nected through Aries interconnect for testing readiness
of applications on Trinity Supercomputer. The dataset
consists of 100 days of logs. We were able to extract
and report the Aries errors from this dataset.

VI. CONCLUSION AND FUTURE WORK

In this work, we presented a study to understand the
Gemini interconnect operations, and, in particular, the
steps of the recovery procedures. Based on this under-
standing, we proposed and implemented methodology
and tools to extract and reconstruct recovery sequences
in order to measure system and application resiliency.

In the future, we plan to take steps to delve deeper
into understanding the root cause of the failure of the
recovery procedures, and have an elaborate discussion on
the impact of these recovery procedures on applications
and systems. We also plan to compare the resiliency of
the Gemini and Aries interconnects in two large-scale
systems using the developed methodologies.

VII. ACKNOWLEDGEMENT

This material is based upon work supported by the
U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research, under Award
Number 2015-02674. This work is partially supported
by NSF CNS 13-14891, an IBM faculty award, and an

unrestricted gift from Infosys Ltd. This research is part of
the Blue Waters sustained-petascale computing project,
which is supported by the National Science Foundation
(awards OCI-0725070 and ACI-1238993) and the state
of Illinois. Blue Waters is a joint effort of the University
of Illinois at Urbana-Champaign and its National Center
for Supercomputing Application. We thank Mark Dalton
(Cray), Larry Kaplan (Cray), Gregory Bauer (NCSA),
Timothy Bouvet (NCSA), Jeremy Enos (NCSA), Joseph
Fullop (NCSA), and Sharif Islam (NCSA) for providing
us the raw data and having many insightful conversations.

REFERENCES

[1] Catello Di Martino, Saurabh Jha, William Kramer, Zbigniew
Kalbarczyk, and Ravishankar K Iyer. Logdiver: A tool for
measuring resilience of extreme-scale systems and applications.
In Proceedings of the 5th Workshop on Fault Tolerance for
HPC at eXtreme Scale, pages 11-18. ACM, 2015.

[2] C. Di Martino, W. Kramer, Z. Kalbarczyk, and R. Iyer. Measur-
ing and understanding extreme-scale application resilience: A
field study of 5,000,000 hpc application runs. In Dependable
Systems and Networks (DSN), 2015 45th Annual IEEE/IFIP
International Conference on, pages 25-36, June 2015.

[3] Richard E Kessler and James L Schwarzmeier. Cray t3d: A new
dimension for cray research. In Compcon Spring’93, Digest of
Papers., pages 176-182. IEEE, 1993.

[4] Steven L Scott et al. The cray t3e network: adaptive routing
in a high performance 3d torus. 1996.

[S] Robert Alverson, Duncan Roweth, and Larry Kaplan. The
gemini system interconnect. In 2010 18th IEEE Symposium on
High Performance Interconnects, pages 83-87. IEEE, 2010.

[6] William J Dally. Performance analysis of k-ary n-cube in-
terconnection networks. Computers, IEEE Transactions on,
39(6):775-785, 1990.

[71 Greg Faanes, Abdulla Bataineh, Duncan Roweth, Edwin
Froese, Bob Alverson, Tim Johnson, Joe Kopnick, Mike Hig-
gins, James Reinhard, et al. Cray cascade: a scalable hpc
system based on a dragonfly network. In Proceedings of
the International Conference on High Performance Computing,
Networking, Storage and Analysis, page 103. IEEE Computer
Society Press, 2012.

[8] Parviz Kermani and Leonard Kleinrock. Virtual cut-through: A
new computer communication switching technique. Computer
Networks (1976), 3(4):267-286, 1979.

[9] William James Dally and Brian Patrick Towles. Principles and
practices of interconnection networks. Elsevier, 2004.

[10] Narasimha R Adiga, Matthias A Blumrich, Dong Chen, Paul
Coteus, et al. Blue gene/l torus interconnection network. /BM
Journal of Research and Development, 49(2/3):265, 2005.

[11] Ron Brightwell, Kevin Pedretti, and Keith D Underwood.
Initial performance evaluation of the cray seastar interconnect.
In High Performance Interconnects, 2005. Proceedings. 13th
Symposium on, pages 51-57. IEEE, 2005.

[12] M Blumrich, Dong Chen, Paul Coteus, Alan Gara, Mark Gi-
ampapa, Philip Heidelberger, Sarabjeet Singh, B Steinmacher-
Burow, Todd Takken, and P Vranas. Design and analysis of

(13]

(14]
(15]
(16]

the bluegene/l torus interconnection network. Technical report,
IBM Research Report RC23025 (W0312-022), 2003.

Matt Ezell. Understanding the impact of interconnect failures
on system operation. In Proceedings of Cray User Group
Conference (CUG 2013), 2013.

Network Resiliency of Cray XE Systems. Cray.
Rainer Gerhards. The syslog protocol. 2009.
R.K. Iyer, L.T. Young, and P.V.K. Iyer. Automatic recognition

[17]

(18]

of intermittent failures: an experimental study of field data.
Computers, IEEE Transactions on, 39(4):525-537, 1990.

J. P. Hansen and Siewiorek D. P. Models for time coalescence
in event logs. In Proc. of 1992 Fault Tolerant Computing FTCS
92, pages 221-227, 1992.

A. Gentile J. Brandt and J. Repik. Mutrino Dataset 2/15-5/15.

SAND2016-2449 O. 2016. Accessed: 2016-03-23.

